Toán học là bộ môn khoa học được coi là chủ lực, bởi trước hết Toán học hình thành cho các em tính chính xác, tính hệ thống, tính khoa học và tính logic, vì thế nếu chất lượng dạy và học toán được nâng cao thì có nghĩa là chúng ta tiếp cận với nền kinh tế tri thức khoa học hiện đại, giàu tính nhân văn của nhân loại.
Cùng với sự đổi mới chương trình và sách giáo khoa, tăng cường sử dụng thiết bị, đổi mới phương pháp dạy học nói chung và đổi mới phương pháp dạy và học toán nói riêng trong trường THCS hiện nay là tích cực hoá hoạt động học tập, hoạt động tư duy, độc lập sáng tạo của học sinh, khơi dậy và phát triển khả năng tự học, nhằm nâng cao năng lực phát hiện và giải quyết vấn đề, rèn luyện và hình thành kĩ năng vận dụng kiến thức một cách khoa học, sáng tạo vào thực tiễn.
18 trang |
Chia sẻ: thiennga98 | Lượt xem: 766 | Lượt tải: 2
Bạn đang xem nội dung tài liệu Sáng kiến kinh nghiệm: Rèn kỹ năng giải bài toán phân tích đa thức thành nhân tử của học sinh môn Đại số 8, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ác bài toán:
* Thay “4” thành “ 64y4 ”, ta có bài toán: x4 + 64y4
Hướng dẫn giải:
Thêm 16x2y2 và bớt 16x2y2 : (làm xuất hiện hằng đẳng thức)
x4 + 64y4 = (x4 + 16x2y2 + 64y4 ) – 16x2y2
= (x2 + 8y2)2 – (4xy)2 = (x2 + 8y2 – 4xy)(x2 + 8y2 + 4xy)
Trên đây là một vài ví dụ điển hình giúp các em học sinh giải quyết những mắc mứu trong quá trình giải bài toán về phân tích đa thức thành nhân tử.
Biện pháp và kết quả thực hiện
j Biện pháp
Để thực hiện tốt kĩ năng phân tích đa thức thành nhân tử nêu trên thành thạo trong thực hành giải toán, giáo viên cần cung cấp cho học sinh các kiến thức cơ bản sau:
Củng cố lại các phép tính, các phép biến đổi, quy tắc dấu và quy tắc dấu ngoặc ở các lớp 6, 7.
Ngay từ đầu chương trình Đại số 8 giáo viên cần chú ý dạy tốt cho học sinh nắm vững chắc kiến thức về nhân đơn thức với đa thức, đa thức với đa thức, các hằng thức đáng nhớ, việc vận dụng thành thạo cả hai chiều của các hằng đẳng thức.
Khi gặp bài toán phân tích đa thức thành nhân tử, học sinh cần nhận xét:
Ü Quan sát đặc điểm của bài toán:
Nhận xét quan hệ giữa các hạng tử trong bài toán (về các hệ số, các biến)
Ü Nhận dạng bài toán:
Xét xem bài toán đã cho thuộc dạng nào?, áp dụng phương pháp nào trước, phương pháp nào sau (đặt nhân tử chung hoặc dùng hằng đẳng thức hoặc nhóm nhiều hạng tử, hay dạng phối hợp các phương pháp)
Ü Chọn lựa phương pháp giải thích hợp:
Từ những cơ sở trên mà ta chọn lựa phương pháp cho phù hợp với bài toán
Lưu ý: Kinh nghiệm khi phân tích một bài toán thành nhân tử
ù Trong một bài toán phân tích đa thức thành nhân tử
- Nếu ở bước 1, đã sử dụng phương pháp đặt nhân tử chung thì bước tiếp theo đối với biểu thức còn lại trong ngoặc, thường là thu gọn, hoặc sử dụng phương pháp nhóm hoặc dùng phương pháp hằng đẳng thức
- Nếu ở bước 1, đã sử dụng phương pháp nhóm các hạng tử thì bước tiếp theo đối với các biểu thức đã nhóm thường sử dụng phương pháp đặt nhân tử chung hoặc dùng phương pháp hằng đẳng thức
- Nếu ở bước 1, đã sử dụng phương pháp dùng hằng đẳng thức thì bước tiếp theo của bài toán thường sử dụng phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức
Chý ý:
Phương pháp đặt nhân tử chung không thể sử dụng liên tiếp nhau ở hai bước liền
Phương pháp nhóm không thể sử dụng liên tiếp nhau ở hai bước liền
Phương pháp dùng hằng đẳng thức có thể sử dụng liên tiếp nhau ở hai bước liền
* Trong phương pháp đặt nhân tử chung học sinh thường hay bỏ sót hạng tử
* Trong phương pháp nhóm học sinh thường đặt dấu sai
Vì vậy, giáo viên nhắc nhở học sinh cẩn thận trong khi thực hiện các phép biến đổi, cách đặt nhân tử chung, cách nhóm các hạng tử, sau mỗi bước giải phải có sự kiểm tra. Phải có sự đánh giá bài toán chính xác theo một lộ trình nhất định, từ đó lựa chọn và sử dụng các phương pháp phân tích cho phù hợp.
Xây dựng học sinh thói quen học tập, biết quan sát, nhận dạng bài toán, nhận xét đánh giá bài toán theo quy trình nhất định, biết lựa chọn phương pháp thích hợp vận dụng vào từng bài toán, sử dụng thành thạo kỹ năng giải toán trong thực hành, rèn luyện khả năng tự học, tự tìm tòi sáng tạo. Khuyến khích học sinh tham gia học tổ, nhóm, học sáng tạo, tìm những cách giải hay, cách giải khác.
k Kết quả
Kết quả áp dụng kĩ năng này đã góp phần nâng cao chất lượng học tập của bộ môn đối với học sinh đại trà.
Cụ thể kết quả kiểm tra về dạng toán phân tích đa thức thành nhân tử được thông kê qua các giai đoạn ở hai lớp 82, 83 năm học 2007 – 2008 như sau:
a) Chưa áp dụng giải pháp
Kiểm tra khảo sát chất lượng đầu năm
Thời gian
Đầu học kỳ I đến giữa học kỳ II
TS
HS
Trung bình trở lên
Số lượng
Tỉ lệ (%)
Chưa áp dụng giải pháp
64
28
43,75%
* Nhận xét: Đa số học sinh chưa nắm được kỹ năng phân tích bài toán, các hằng đẳng thức đáng nhớ, quy tắc dấu, quy tắc dấu ngoặc, cách trình bày bài giải còn lung tung.
b) Áp dụng giải pháp
Lần 1: Kiểm tra 1 tiết
Thời gian
Đầu học kỳ I đến giữa học kỳ II
TS
HS
Trung bình trở lên
Số lượng
Tỉ lệ (%)
Kết quả áp dụng giải pháp (lần 1)
64
39
60,94%
* Nhận xét: Học sinh đã hệ thống, nắm chắc kiến thức cơ bản về các hằng đẳng thức đáng nhớ, quy tắc dấu, quy tắc dấu ngoặc vận dụng khá tốt các phương pháp phân tích đa thức thành nhân tử trong giải toán, biết nhận xét đánh giá bài toán trong các trường hợp, trình bày khá hợp lý.
Lần 2: Kiểm tra học kì I
Thời gian
Đầu học kỳ I đến giữa học kỳ II
TS
HS
Trung bình trở lên
Số lượng
Tỉ lệ (%)
Kết quả áp dụng giải pháp (lần 2)
64
60
93,75%
* Nhận xét: Học sinh nắm vững chắc các kiến về phân tích đa thức thành nhân tử, vận dụng thành thạo kỹ năng biến đổi, phân tích, biết dựa vào các bài toán đã biết cách giải truớc đó, linh hoạt biến đổi và vận dụng hằng đẳng thức và đã trình bày bài giải hợp lý hơn có hệ thống và logic, chỉ còn một số ít học sinh quá yếu, kém chưa thực hiện tốt.
Học sinh tích cực tìm hiểu kĩ phương pháp giải, phân loại từng dạng toán, chủ động lĩnh hội kiến thức, có kĩ năng giải nhanh các bài toán có dạng tương tự, đặt ra nhiều vấn đề mới, nhiều bài toán mới.
á Tóm lại:
Từ thực tế giảng dạy khi áp dụng phương pháp này tôi nhận thấy học sinh nắm vững kiến thức hơn, hiểu rõ các cách giải toán ở dạng bài tập này. Kinh nghiệm này đã giúp học sinh trung bình, học sinh yếu nắm vững chắc về cách phân tích đa thức thành nhân tử trong chương trình đã học, được học và rèn luyện kĩ năng thực hành theo hướng tích cực hoá hoạt động nhận thức ở những mức độ khác nhau thông qua một chuỗi bài tập. Bên cạnh đó còn giúp cho học sinh khá giỏi có điều kiện tìm hiểu thêm một số phương pháp giải khác, các dạng toán khác nâng cao hơn, nhằm phát huy tài năng toán học, phát huy tính tự học, tìm tòi, sáng tạo của học sinh trong học toán.
C/. KẾT LUẬN
Ỉ Bài học kinh nghiệm
Thông qua việc nghiên cứu đề tài và những kinh nghiệm từ thực tiễn giảng dạy, cho phép tôi rút ra một số kinh nghiệm sau:
ù Đối với học sinh yếu kém: Là một quá trình liên tục được củng cố và sửa chữa sai lầm, cần rèn luyện các kỹ năng để học sinh có khả năng nắm được phương pháp vận dụng tốt các phương pháp phân tích cơ bản vào giải toán, cho học sinh thực hành theo mẫu với các bài tập tương tự, bài tập từ đơn giản nâng dần đến phức tạp, không nên dẫn các em đi quá xa nội dung SGK.
ù Đối với học sinh đại trà: Giáo viên cần chú ý cho học sinh chỉ nắm chắc các phương pháp cơ bản, kĩ năng biến đổi, kĩ năng thực hành và việc vận dụng từng phương pháp đa dạng hơn vào từng bài tập cụ thể, luyện tập khả năng tự học, gợi sự suy mê hứng thú học, kích thích và khơi dậy óc tìm tòi, chủ động chiếm lĩnh kiến thức.
ù Đối với học sinh khá giỏi: Ngoài việc nắm chắc các phương pháp cơ bản, ta cần cho học sinh tìm hiểu thêm các phương pháp phân tích nâng cao khác, các bài tập dạng mở rộng giúp các em biết mở rộng vấn đề, cụ thể hoá vấn đề, tương tự hoá vấn đề để việc giải bài toán phân tích đa thức thành nhân tử tốt hơn. Qua đó tập cho học sinh thói quen tự học, tự tìm tòi sáng tạo, khác thác cách giải, khai thác bài toán khác nhằm phát triển tư duy một cách toàn diện cho quá trình tự nghiên cứu của các em.
ù Đối với giáo viên: Giáo viên thường xuyên kiểm tra mức độ tiếp thu và vận dụng của học sinh trong quá trình cung cấp các thông tin mới có liên quan trong chương trình đại số 8 đã đề cập ở trên.
Giáo viên phải định hướng và vạch ra những dạng toán mà học sinh phải liên hệ và nghĩ đến để tìm hướng giải hợp lý như đã đề cập, giúp học sinh nắm vững chắc hơn về các dạng toán và được rèn luyện về những kĩ năng phân tích một cách tường minh trong mỗi dạng bài tập để tìm hướng giải sau đó biết áp dụng và phát triển nhanh trong các bài tập tổng hợp, kĩ năng vận dụng các phương pháp phân tích đa thức thành nhân tử một cách đa dạng hơn trong giải toán. Đồng thời tạo điều kiện để học sinh được phát triển tư duy một cách toàn diện, gợi sự suy mê hứng thú học tập, tìm tòi sáng tạo, kích thích và khơi dậy khả năng tự học của học sinh, chủ động trong học tập và trong học toán.
Nếu thực hiện tốt phương pháp trên trong quá trình giảng dạy và học tập thì chất lượng học tập bộ môn của học sinh sẽ được nâng cao hơn, đào tạo được nhiều học sinh khá giỏi, đồng thời tuyển chọn được nhiều học sinh giỏi cấp trường, cấp huyện, tỉnh,....
Ỉ Hướng phổ biến áp dụng
Đề tài được triển khai phổ biến và áp dụng rộng rãi trong chương trình đại số lớp 8, cho các năm học sau, cho những trường cùng loại hình.
Ỉ Hướng nghiên cứu phát triển
Đề tài sẽ được nghiên cứu tiếp tục ở các phương pháp phân tích đa thức thành nhân tử khác (nâng cao)
Đề tài nghiên cứu cho các đa thức phức tạp hơn, đi sâu vào việc nghiên cứu các đa thức đặc biệt.
File đính kèm:
- SKKN Ren ky nang giai bai toan phan tich da thuc thanh nhan tu.doc