Một trong những mục tiêu cơ bản của nhà trường là đào tạo và xây dựng thế hệ học sinh trở thành những con người mới phát triển toàn diện, có đầy đủ phẩm chất đạo đức, năng lực, trí tuệ để đáp ứng với yêu cầu thực tế hiện nay.
Muốn giải quyết thành công nhiệm vụ quan trọng này, trước hết chúng ta phải tạo tiền đề vững chắc lâu bền trong phương pháp học tập của học sinh cũng như phương pháp giảng dạy của giáo viên các bộ môn nói chung và môn toán nói riêng.
Toán học là một môn khoa học tự nhiên quan trọng.
Trong quá trình học tập của học sinh ở trường phổ thông, nó đòi hỏi tư duy rất tích cực của học sinh.
Để giúp các em học tập môn toán có kết quả tốt, có rất nhiều tài liệu sách báo đề cập tới. Giáo viên không chỉ nắm được kiến thức, mà điều cần thiết là phải biết vận dụng các phương pháp giảng dạy một cách linh hoạt, truyền thụ kiến thức cho học sinh dễ hiểu nhất.
23 trang |
Chia sẻ: baoan21 | Lượt xem: 2312 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Hướng dẫn học sinh giải toán phần: “Giải toán bằng cách lập phương trình”, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
iải : Gọi x là số xe của đội xe, x nguyên dương. Hôm làm việc có (x - 2) xe. Theo dự định thì mỗi xe phải chở tấn, nhưng vì có 2 xe đi làm việc khác nên mỗi xe thực tế phải chở tấn và như thế phải chở thêm 16 tấn. Ta có phương trình : - = 16
Giải phương trình :120x - 120(x - 2) = 16x (x - 2)
16x2 - 32x - 240 = 0
x2 - 2x - 15 = 0
D‘ = 1 + 15 = 16
Phương trình có nghiệm là x1 = 5 và x = -3 . Chỉ có giá trị x =5 là thích hợp với điều kiện đẫ nêu.
Thử lại: 120 : 5 =24 (tấn) ; 5-2=3 (xe)
120 : 3 =40 (tấn) ; 40 – 24 =16 (tấn).
Vậy đội xe co 5 xe ô tô.
Bài tập đề nghị :
1-Hai lớp 91 và 92 được mua tất cả thảy 380 tập giấy và được phân phối đều cho hai lớp theo tỷ lệ . Hỏi mỗi lớp mua được bao nhiêu tập giấy.
2-Một đội thanh niên xung phong theo kế hoạch phải đào 40 m3 đất. Nhưng khi bất đầu làm đôïi được bổ sung thêm 5 người nên mỗi người giảm được định mức 0,4m3 đất. Hỏi đội có bao nhiêu người?
3- Hội trường có 320 chỗ ngồi. Số người đến dự là 420 người, do đó phải xếp để mỗi dãy thêm 4 ghế và phải đặt thêm một dãy ghế nữa mới đủ. Hỏi hội trường lúc đầu có mấy dãy ghế và mỗi dãy có bao nhiêu ghế.
C – BIỆN PHÁP THỰC HIỆN:
Để thực hiện tốt yêu cầu đề ra trong việc phân tích bài toán “Giải toán bằng cách lập hệ phương trình” với thời lượng lên lớp chính khóa (2tiết) là rất khó.Do đo,ù bản thân tôi mạnh dạn đưa ra các biện pháp sau đây:
1/ Việc quan trọng nhất trong thành công dạy học theo tôi đó là giáo viên phải soạn bài thật tốt, chuẩn bị một hệ thống câu hỏi phù hợp, các bài tập trắc nghiệm, tự luận phù hợp.
2/ Phân tích các bài tập “mẫu” cho học sinh qua các giờ phụ đạo do nhà trường tổ chức hoặc trong các giờ học môn tự chọn môn toán.Tuy nhiên để truyền tải thông tin đến học sinh nhanh nhất bản thân tôi soạn một số bài tập trắc nghiệm nhỏ để các em thực hiện.
Ví dụ: Để ôn tập cho phần “Đường lối chung để giải bài toán bằng cách lập hệ phương trình” tôi soạn một bài tập như sau: Sắp xếp các bước sau theo cách hợp lý để chỉ ra “Đường lối chung để giải bài toán bằng cách lập hệ phương trình”
c- Nhờ sự liên quan giữa các số liệu, căn cứ vào đề bài, mà lập phương trình,hệ phương trình
e- Chọn ẩn số, chú ý ghi rõ đơn vị và đặt điều kiện cho ẩn số.
a-Nhận định kết quả, thử lại và trả lời. Chú ý so sánh với điều kiện đặt ra cho ẩn xem có thích hợp không, sau đó trả lời bằng danh số (có kèm theo đơn vị).
d- Dùng ẩn số và các số đã biết cho ở đề bài để biểu thị các số liệu khác, diễn giải các bộ phận hình thành phương trình, hệ phương trình.
h-Lập phương trình gồm các công việc :
b-Giải phương trình (hệ phương trình). Tùy theo từng dạng phương trình mà chọn cách giải thích thích hợp và ngắn gọn.”
*Hoặc với bài toán :”Nếu hai vòi cùng chảy vào bể thì sau 1 giờ 20 phút thì đầy bể. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ hai trong 12 phút thì đầy bể. Hỏi nếu mỗi vòi chảy riêng thì phải bao lâu đầy bể ?”( Bài 5 trang 69 – Đại số 9). Bản thân tôi soạn một phiếu học tập như sau: Em hãy điền vào chỗ trống (........) nội dung thích hợp:
Nếu gọi thời gian vòi 2 chảy là x (h) .Điều kiện của x ............
+ Năng suất của vòi 1 chảy là.........
+ Năng suất vòi 2 chảy là ..................
+ Cả hai vòi cùng chảy trong 1 giờ :
Ta có phương trình : + =
3/ Chia học sinh thành các nhóm nhỏ,mỗi nhóm có nhóm trưởng (Học sinh có học lực khá ,có uy tín với các bạn ).Tổ chức nhóm thảo luận các bài tập “mẫu”mà giáo viên đã giải ra giấy photo từ đó áp dụng giải một số bài tập mà giáo viên đưa ra. Sau đó cho các nhóm lên bảng trình bày bài giaiû của mình (có thuyết trình). Các thành viên còn lại của lớp có thể đặt câu hỏi pháp vấn nhóm giải bài. (nếu câu hỏi hay giáo viên phải kịp thời khen ngợi các em)
4/ Giáo viên phải chuẩn bị một số bài tập tương tự cho các em ( bản thân tôi photo các đề bài đã biên soạn ở trên phát cho các nhóm) về nhà thực hiện. Buổi sau ,bản thân tôi thu vở của các em, chấm và chữa từng bài giải của một số em, sửa từng câu văn, phép tính. Đây là một việc làm không khó, tuy nhiên nó đòi hỏi ở giáo viên sự tận tâm, tận tụy chịu khó trong công việc.
D - KẾT QUẢ VÀ BÀI HỌC KINH NGHIỆM
Trên đây chỉ là một vài kinh nghiệm nhỏ được rút ra từ thực tế những năm giảng dạy của bản thân tôi. Phần giải toán bằng cách lập phương trình cũng rất đa dạng, tuy nhiên với khả năng của mình, tôi chỉ đề cập đến một số dạng đơn giản mà các em thường gặp ở chương trình lớp 8, lớp 9. Tôi cũng chỉ đi sâu vào vấn đề nhỏ đó là hướng dẫn, giúp các em có kỹ năng lập phương trình bài toán, bởi vì muốn giải được bài toán bằng cách lập phương trình thì phải lập được phương trình, có phương trình đúng thì giải phương trình có kết quả đúng, dẫn đến mới trả lời được điều mà bài toán đòi hỏi.
Với những việc làm như đã nêu ở trên, bản thân tôi tự nghiên cứu áp dụng .Bước đầu tôi thấy có một số kết quả sau:
-Trước khi thực hiện phương pháp này, đầu năm học tôi cho cacù học sinh lớp 94 (năm học: 2005-2006) do tôi phụ trách ( gồm 48 em) làm một bài toán giải của lớp 8,Tôi ghi lại kết quả theo dõi như sau:
-Điểm 9 ; 10: 04 học sinh.
-Điểm 5;6;7;8: 20 học sinh .
-Điểm dưới trung bình: 24 học sinh.
Sau khi thực hiện tôi thấy kết quả của các em nâng lên rõ rệt:
-Điểm 9 ; 10 : 10 học sinh.
-Điểm 5;6;7;8 : 26 học sinh.
-Điểm dưới trung bình: 8 học sinh. (Kết quả kiểm tra học kỳ I) và trong bài kiểm tra chương III Đại số 9, Tôi thấy hầu hết các em đã biết trình bày bài toán dạng này (36/44 học sinh đạt điểm trên trung bình). Tuy nhiên, một kết quả khác mà học sinh của tôi đạt được . Tôi thiết nghĩ không thể nói lên bằng các con số đó là:
-Phần lớn học sinh đã say mê giải những bài toán bằng cách lập phương trình.
- Các em không còn lúng túng khi lập phương trình nữa.
- Các em có niềm tin, niềm say mê, hứng thú trong học toán , Từ đó, nó tạo cho các em tính tự tin độc lập suy nghĩ.
-Phát triển tư duy logic, óc quan sát, suy luận toán học, các em đã biết “Phiên dịch” các vấn đề từ ngôn ngữ văn học sang ngôn ngữ toán học thông qua các phép toán, biểu thức, phương trình.... giaiû quyết vấn đề đó .Từ đó, nó giúp phát triển ngôn ngữ và tạo cho cá em một tư thế mới , vững vàng trong học tập , lao động và trong cuộc sống.
- Trong quá trình giải các bài tập đã giúp các em có khả năng phân tích, suy ngẫm, khái quát vấn đề một cách chặt chẽ, các em không còn ngại khó, mà rất tự tin vào khả năng học tập của mình.
- Nhiều em khá giỏi đã tìm ra được cách giải hay và ngắn gọn phù hợp.
Tuy vậy bên cạnh những kết quả đạt được thì vẫn còn một số ít học sinh học yếu , lười học, chưa có khả năng tự mình giải được những bài toán bằng cách lập phương trình. Đối với các em yếu, đây là một việc thực sự khó khăn. Một phần cũng là do khả năng học toán của các em còn hạn chế, mặt khác dạng toán này lại rất khó, đòi hỏi sự tư duy nhiều ở các em.
Một yếu tố cũng ảnh hưởng đến chất lượng học của các em có lẽ là phương pháp giảng dạy của bản thân tôi đôi lúc chưa thực sự hợp lý.
Trong quá trình giảng dạy, chắc hẳn ai cũng mong muốn cho học sinh hiểu bài, chất lượng học tập của các em tốt hơn, tạo cho các em có đầy đủ điều kiện bước vào cuộc sống hoặc học lên nữa. Vì vậy nó đòi hỏi chúng ta là người tạo ra những sản phẩm ấy cần phải :
- Có một kiến thức vững chắc, có phương pháp truyền thụ phù hợp với từng đối tượng học sinh.
- Học sinh phải nắm vững lý thuyết, biết vận dụng thực hành từng loại toán, giải nhanh, thành thạo bằng nhiều cách. Trên cơ sở giải bài tập, biết đặt ra bài tập mới để kích thích sự say mê học toán của mình.
Những biện pháp và việc làm của tôi như đã trình bày ở trên,bước đầu chưa đạt được kết quả chưa thật mỹ mãn đối với tâm ý của bản thân. Tuy nhiên, nếu thực hiện tốt tôi nghĩ nó cũng góp phần đổi mới phương pháp dạy học mà ngành đang quan tâm và chỉ đạo. Mặt khác , với cách trình bày như trên (nếu thành công) .Tôi thiết nghĩ , chúng ta có thể áp dụng cho một số phần khác như:Giải phương trình quy về bậc hai,Hệ thức Viet và áp dụng của nó.Các phương pháp chứng minh hình học.
Tôi tin chắc rằng những kinh nghiệm của tôi cũng chỉ là một trong những biện pháp nhỏ bé trong vô vàn kinh nghiệm được đúc kết qua sách vơ,û cũng như của quý thầy giáo, cô giáo đi trước và các bạn đồng nghiệp. Vì vậy, bản thân tôi rất mong được sự góp ý, xây dựng của quý thầy giáo, cô giáo, cùng các bạn đồng nghiệp, nhằm giúp tôi từng bước hoàn thiện phương pháp giảng dạy của mình.Từ đó, bản thân tôi có điều kiện cống hiến nhiều hơn nữa trí lực của mình cho sự nghiệp giáo dục mà Bác Hồ kính yêu của chúng ta hằng mong ước và toàn Đảng, toàn dân ta hằng quan tâm. Tôi xin chân thành cảm ơn.
Pleiku, Tháng 11 năm 2007.
Người biên soạn
File đính kèm:
- SKKN toan 9.doc