Bài giảng môn Hình học 8 - Tuần 13 - Tiết 25 - Bài 1: Đa giác - Đa giác đều

MỤC TIÊU

- Kiến thức: HS nắm vững các khái niệm về đa giác, đa giác lồi, nắm vững các công thức tính tổng số đo các góc của một đa giác.

- Vẽ và nhận biết được một số đa giác lồi, một số đa giác đều. Biết vẽ các trục đối xứng, tâm đối xứng ( Nếu có ) của một đa giác. Biết sử dụng phép tương tự để xây dựng khái niệm đa giác lồi, đa giác đều từ những khái niệm tương ứng.

 

doc5 trang | Chia sẻ: vivian | Lượt xem: 1310 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng môn Hình học 8 - Tuần 13 - Tiết 25 - Bài 1: Đa giác - Đa giác đều, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn:2/11/2012 Tuần 13 Tiết 25 Chương II: Đa giác - Diện tích đa giác 1. Đa giác - Đa giác đều I- Mục tiêu - Kiến thức: HS nắm vững các khái niệm về đa giác, đa giác lồi, nắm vững các công thức tính tổng số đo các góc của một đa giác. - Vẽ và nhận biết được một số đa giác lồi, một số đa giác đều. Biết vẽ các trục đối xứng, tâm đối xứng ( Nếu có ) của một đa giác. Biết sử dụng phép tương tự để xây dựng khái niệm đa giác lồi, đa giác đều từ những khái niệm tương ứng. - Kỹ năng: Quan sát hình vẽ, biết cách qui nạp để xây dựng công thức tính tổng số đo các góc của một đa giác. - Thái độ: Kiên trì trong suy luận, cẩn thận, chính xác trong hình vẽ. II- phương tiện thực hiện: - GV: Bảng phụ, các loại đa giác HS: Thước, com pa, đo độ, ê ke. Iii- Tiến trình Tổ chức: Kiểm tra: - Tam gíac là hình như thế nào ? - Tứ giác là hình như thế nào ?Thế nào là một tứ giác lồi ? C. Bài mới Hoạt động của GV Hoạt động của HS * HĐ1: Xây dựng khái niệm đa giác lồi. 1) Khái niệm về đa giác - GV: cho HS quan sát các hình 112, 113, 114, 115, 116, 117 (sgk) & hỏi: - Mỗi hình trên đây là một đa giác, chúng có đặc điểm chung gì ? - Nêu định nghĩa về đa giác - GV: chốt lại - GV cho HS làm ?1 Tại sao hình gồm 5 đoạn thẳng: AB, BC, CD, DE, EA ở hình bên không phải là đa giác ? GV: Tương tự như tứ giác lồi em hãy định nghĩa đa giác lồi? - HS phát biểu định nghĩa GV: từ nay khi nói đến đa giác mà không chú thích gì thêm ta hiểu đó là đa giác lồi. - GV cho HS làm ?2 Tại sao các đa giác ở hình 112, 113, 114 không phải là đa giác lồi? ( Vì có cạnh chia đa giác đó thành 2 phần thuộc nửa mặt phẳng đối nhau, trái với định nghĩa) - GV cho HS làm ?3 - Quan sát đa giác ABCDEG rồi điền vào ô trống - GV: Dùng bảng phụ cho HS quan sát và trả lời - GV: giải thích: + Các điểm nằm trong của đa giác gọi là điểm trong đa giác + Các điểm nằm ngoài của đa giác gọi là điểm ngoài đa giác. + Các đường chéo xuất phát từ một đỉnh của đa giác. + Các góc của đa giác. + Góc ngoài của đa giác. GV: cách gọi tên cụ thể của mỗi đa giác như thế nào? GV: chốt lại - Lấy số đỉnh của mỗi đa giác đặt tên - Đa giác n đỉnh ( n 3) thì gọi là hình n giác hay hình n cạnh - n = 3, 4, 5, 6, 8 ta quen gọi là tam giác, tứ giác, ngũ giác, lục giác, bát giác - n = 7, 9,10, 11, 12, Hình bảy cạnh, hình chín cạnh, * HĐ2: Xây dựng khái niệm đa giác đều 2) Đa giác đều - GV: hình cắt bằng giấy các hình 20 a, b, c, d - GV: Em hãy quan sát và tìm ra đặc điểm chung nhất ( t/c) chung của các hình đó. - Hãy nêu định nghĩa về đa giác đều? -Hãy vẽ các trục đối xứng và tâm đối xứng của các hình 1) Khái niệm về đa giác + Đa giác ABCDE là hình gồm 5 đoạn thẳng AB, BC, AC, CD, DE, EA trong đó bất kì hai đoạn thẳng nào cũng không nằm trên một đường thẳng ( Hai cạnh có chung đỉnh ) - Các điểm A, B, C, D gọi là đỉnh - Các đoạn AB, BC, CD, DE gọi là cạnh B C A E . D Hình gồm 5 đoạn thẳng: AB, BC, CD, DE, EA ở hình trên không phải là đa giác vì 2 đoạn thẳng DE & EA có điểm chung E * Định nghĩa: sgk ?2 ?3 ã R B A ãM ãN C G E D 2) Đa giác đều * Định nghĩa: sgk + Tất cả các cạnh bằng nhau + Tất cả các góc bằng nhau + Tổng số đo các góc của hình n giác bằng: Sn = (n - 2).1800 + Tính số đo ngũ giác: (5 - 2). 1800 =5400 + Số đo từng góc: 5400 : 5 = 1080 D- Củng cố: * HS làm bài 4/115 sgk ( HS làm việc theo nhóm) GV dùng bảng phụ + Tổng số đo các góc của hình n giác bằng: Sn = (n - 2).1800 + Tính số đo ngũ giác: (5 - 2). 1800 =5400. Số đo từng góc: 5400 : 5 = 1080 + Tính số đo của lục giác, bát giác. E- Hướng dẫn về nhà - Làm các bài tập: 2, 3, 5/ sgk - Học bài. IV. Rút Kinh Nghiệm: .......................................................................... .......................................................................... Ngày soạn: 2/11/2012 Tuần 13 Tiết 26 2. Diện tích hình chữ nhật I- Mục tiêu bài giảng: - Kiến thức: HS nắm vững công thức tính diện tích hình chữ nhật, hình vuông, tam giác, các tính chất của diện tích. - Hiểu được để CM các công thức đó cần phải vận dụng các tính chất của diện tích - Kỹ năng: Vận dụng công thức và tính chất của diện tích để giải bài toán về diện tích - Thái độ: Kiên trì trong suy luận, cẩn thận, chính xác trong hình vẽ. II phương tiện thực hiện: - GV: Bảng phụ, dụng cụ vẽ. HS: Thứơc com pa, đo độ, ê ke. Iii- Tiến trình bài dạy A.Tổ chức: B- Kiểm tra:- Phát biểu định nghĩa đa giác lồi, đa giác đều? - Trong số các đa giác đều n cạnh thì những đa giác nào vừa có tâm đối xứng, vừa có trục đối xứng? - Đa giác có số cạnh chẵn thì vừa có trục đối xứng vừa có tâm đối xứng (có 1 tâm đ/x) - Đa giác có số cạnh lẻ chỉ có trục đối xứng không có tâm đối xứng. - Số trục đối xứng của đa giác đều n cạnh là n ( n 3; n chẵn hoặc n lẻ) C.Bài mới: Hoạt động của GV Hoạt động của HS * HĐ1: Hình thành khái niệm diện tích đa giác - GV: Đưa ra bảng phụ hình vẽ 121/sgk và cho HS làm bài tập - Xét các hình a, b, c, d, e trên lưới kẻ ô vuông mỗi ô là một đơn vị diện tích. a) Kiểm tra xem diện tích của a là 9 ô vuông, diện tích của hình b cũng là 9 ô vuông hay không? b) Tại sao nói diện tích của d gấp 4 lần diện tích của c c.So sánh diện tích của c và của e - GV: chốt lại: Khi lấy mỗi ô vuông làm một đơn vị diện tích ta thấy : + Diện tích hình a = 9 đơn vị diện tích, Diện tích hình b = 9 đơn vị diện tích . Vậy diện tích a = diện tích b + Diện tích hình d = 8 đơn vị diện tích, Diện tích hình c = 2 đơn vị diện tích, Vậy diện tích d gấp 4 lần diện tích c + Diện tích e gấp 4 lần diện tích c - GV: Ta đã biết 2 đoạn thẳng bằng nhau có độ dài bằng nhau. Một đoạn thẳng chia ra thành nhiều đoạn thẳng nhỏ có tổng các đoạn thẳng nhỏ bằng đoạn thẳng đã cho. Vậy diện tích đa giác có tính chất tương tự như vậy không? * Tính chất: -GV nêu tính chất. * Chú ý: + Hình vuông có cạnh dài 10m có diện tích là 1a + Hình vuông có cạnh dài 100m có diện tích là 1ha + Hình vuông có cạnh dài 1km có diện tích là 1km2 Vậy: 100 m2 = 1a, 10 000 m2 = 1 ha 1 km2 = 100 ha + Người ta thường ký hiệu diện tích đa giác ABCDE là SABCDE hoặc S. * HĐ2: Xây dựng công thức tính diện tích hình chữ nhật. 2) Công thức tính diện tích hình chữ nhật. - GV: Hình chữ nhật có 2 kích thước a & b thì diện tích của nó được tính như thế nào? - ở tiểu học ta đã được biết diện tích hình chữ nhật : S = a.b Trong đó a, b là các kích thước của hình chữ nhật, công thức này được chứng minh với mọi a, b. + Khi a, b là các số nguyên ta dễ dàng thấy. + Khi a, b là các số hữu tỷ thì việc chứng minh là phức tạp. Do đó ta thừa nhận không chứng minh. * Chú ý: Khi tính diện tích hình chữ nhật ta phải đổi các kích thước về cùng một đơn vị đo * HĐ3: Hình thành công thức tính diện tích hình vuông, tam giác vuông. 3) Công thức tính diện tích hình vuông, tam giác vuông. a) Diện tích hình vuông - GV: Phát biểu định lý và công thức tính diện tích hình vuông có cạnh là a? - GV: Hình vuông là một hình chữ nhật đặc biệt có chiều dài bằng chiều rộng ( a = b) S = a.b = a.a = a2 b) Diện tích tam giác vuông - GV: Từ công thức tính diện tích hình chữ nhật suy ra công thức tính diện tích tam giác vuông có cạnh là a, b ? - Kẻ đường chéo AC ta có 2 tam giác nào bằng nhau. - Ta có công thức tính diện tích của tam giác vuông như thế nào? 1) Khái niệm diện tích đa giác - Đa giác lồi là đa giác luôn nằm trong một mặt phẳng mà bất kỳ cạnh nào cũng là bờ. - Đa giác đều : Là đa giác có tất cả các cạnh bằng nhau, tất cả các góc bằng nhau. + Đếm trong hình a có 9 ô vuông vậy diện tích hình a là 9 ô + Hình b có 8 ô nguyên và hia nửa ghép lại thành 1 ô vuông, nên hình b cũng có 9ô vuông. + Diện tích hình d = 8 đơn vị diện tích, Diện tích hình c = 2 đơn vị diện tích, Vậy diện tích d gấp 4 lần diện tích c + Diện tích e gấp 4 lần diện tích c *Kết luận: - Số đo của phần mặt phẳng giới hạn bởi 1 đa giác được gọi là diện tích đa giác đó. - Mỗi đa giác có 1 diện tích xác định. Diện tích đa giác là 1 số dương. Tính chất: 1) Hai tam giác bằng nhau có diện tích bằng nhau. 2) Nếu 1 đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. 3) Nếu chọn hình vuông có cạnh là 1 cm, 1 dm, 1 m là đơn vị đo độ dài thì đơn vị diện tích tương ứng là 1 cm2, 1 dm2, 1 m2 2) Công thức tính diện tích hình chữ nhật. * Định lý: Diện tích của hình chữ nhật bằng tích 2 kích thước của nó. S = a. b * Ví dụ: a = 5,2 cm b = 0,4 cm S = a.b = 5,2 . 0,4 = 2,08 cm2 a b 3) Công thức tính diện tích hình vuông, tam giác vuông. a) Diện tích hình vuông * Định lý: Diện tích hình vuông bằng bình phương cạnh của nó: S = a2 a b) Diện tích tam giác vuông * Định lý: Diện tích của tam giác vuông bằng nửa tích hai cạnh của nó. ?3 S = a.b Để chứng minh định lý trên ta đã vận dụng các tính chất của diện tích như : - Vận dụng t/c 1: ABC = ACD thì SABC = SACD - Vận dụng t/c 2: Hình chữ nhật ABCD được chi thành 2 tam giác vuông ABC & ACD không có điểm trong chung do đó: SABCD = SABC + SACD D- Củng cố: - Chữa bài 6 (sgk) a) Chiều dài tăng 2 lần, chiều rộng không đổi b) Chiều dài và chiều rộng tăng 3 lần. c) Chiều dài tăng 4 lần, chiều rộng giảm 4 lần. Giải: Bài 6 (sgk) a) a' = 2a ; b' = b S = a'.b' = 2a.b = 2ab = 2S b) a' = 3a ; b' = 3b S = 3a.3b = 9ab = 9S c) a' = 4a ; b' = b Ninh Hòa, ngày..tháng . năm2012 Duyệt của tổ trưởng Tô Minh Đầy S' = 4a. b = ab = S E- Hướng dẫn về nhà - Học bài & làm các bài tập: 7,8 (sgk) - Xem trước bài tập phần luyện tập. IV. Rút Kinh Nghiệm: . .

File đính kèm:

  • docHINH 8 (13).doc