Tài liệu giáo án giảng dạy giáo viên thực hiện dạy học và kiểm tra đánh giá theo chuẩn kiến thức, kỹ năng chương trình giáo dục phổ thông

I. MỤC TIÊU:

 Kiến thức:

 Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm.

 Nắm được qui tắc xét tính đơn điệu của hàm số.

 Kĩ năng:

 Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó.

 Thái độ:

 Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống.

II. CHUẨN BỊ:

 Giáo viên: Giáo án. Hình vẽ minh hoạ.

 Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở lớp

 

doc82 trang | Chia sẻ: baoan21 | Lượt xem: 1089 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Tài liệu giáo án giảng dạy giáo viên thực hiện dạy học và kiểm tra đánh giá theo chuẩn kiến thức, kỹ năng chương trình giáo dục phổ thông, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
khoảng đơn điệu của hàm số y = x3. 7' Hoạt động 2: Tìm hiểu qui tắc xét tính đơn điệu của hàm số · GV hướng dẫn rút ra qui tắc xét tính đơn điệu của hàm số. II. Qui tắc xét tính đơn điệu của hàm số 1. Qui tắc 1) Tìm tập xác định. 2) Tính f¢(x). Tìm các điểm xi (i = 1, 2, , n) mà tại đó đạo hàm bằng 0 hoặc không xác định. 3) Săpx xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên. 4) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số. 15' Hoạt động 3: Áp dụng xét tính đơn điệu của hàm số · Chia nhóm thực hiện và gọi HS lên bảng. · GV hướng dẫn xét hàm số: trên . H1. Tính f¢(x) ? · Các nhóm thực hiện yêu cầu. a) đồng biến (–¥; –1), (2; +¥) nghịch biến (–1; 2) b) đồng biến (–¥; –1), (–1; +¥) Đ1. f¢(x) = 1 – cosx ³ 0 (f¢(x) = 0 Û x = 0) Þ f(x) đồng biến trên Þ với ta có: > f(0) = 0 2. Áp dụng VD3: Tìm các khoảng đơn điệu của các hàm số sau: a) b) VD4: Chứng minh: trên khoảng . 5' Hoạt động 4: Củng cố Nhấn mạnh: – Mối liên quan giữa đạo hàm và tính đơn điệu của hàm số. – Qui tắc xét tính đơn điệu của hàm số. – Ứng dụng việc xét tính đơn điệu để chứng minh bất đẳng thức. 4. BÀI TẬP VỀ NHÀ: Bài 3, 4, 5 SGK. IV. RÚT KINH NGHIỆM, BỔ SUNG: Ngày soạn: Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ Tiết dạy: 03 Bài 1: BÀI TẬP SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm. Nắm được qui tắc xét tính đơn điệu của hàm số. Kĩ năng: Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hệ thống bài tập. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (Lồng vào quá trình luyện tập) H. Đ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Xét tính đơn điệu của hàm số H1. Nêu các bước xét tính đơn điệu của hàm số? H2. Nhắc lại một số qui tắc xét dấu đã biết? Đ1. a) ĐB: , NB: b) ĐB: , NB: , c) ĐB: , NB: , d) ĐB: e) NB: f) ĐB: , NB: 1. Xét sự đồng biến, nghịch biến của hàm sô: a) b) c) d) e) f) 7' Hoạt động 2: Xét tính đơn điệu của hàm số trên một khoảng H1. Nêu các bước xét tính đơn điệu của hàm số? Đ1. a) D = R y¢ = 0 Û x = ± 1 b) D = [0; 2] y¢ = 0 Û x = 1 2. Chứng minh hàm số đồng biến, nghịch biến trên khoảng được chỉ ra: a) , ĐB: , NB: b) , ĐB: , NB: 15' Hoạt động 3: Vận dụng tính đơn điệu của hàm số · GV hướng dẫn cách vận dụng tính đơn điệu để chứng minh bất đẳng thức. – Xác lập hàm số. – Xét tính đơn điệu của hàm số trên miền thích hợp. · a) . y¢ = 0 Û x = 0 Þ y đồng biến trên Þ y¢(x) > y¢(0) với b) y¢ = 0 Û x = 0 Þ y đồng biến trên Þ y¢(x) > y¢(0) với 3. Chứng minh các bất đẳng thức sau: a) . b) . 5' Hoạt động 4: Củng cố Nhấn mạnh: – Qui tắc xét tính đơn điệu của hàm số. – Ứng dụng việc xét tính đơn điệu để chứng minh bất đẳng thức. 4. BÀI TẬP VỀ NHÀ: Bài tập thêm. Đọc trước bài "Cực trị của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: Ngày soạn: Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ Tiết dạy: 04 Bài 2: CỰC TRỊ CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Mô tả được các điều kiện đủ để hàm số có điểm cực trị. Kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (3') H. Xét tính đơn điệu của hàm số: ? Đ. ĐB: , NB: . 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 10' Hoạt động 1: Tìm hiểu khái niệm cực trị của hàm số · Dựa vào KTBC, GV giới thiệu khái niệm CĐ, CT của hàm số. · Nhấn mạnh: khái niệm cực trị mang tính chất "địa phương". H1. Xét tính đơn điệu của hàm số trên các khoảng bên trái, bên phải điểm CĐ? Đ1. Bên trái: hàm số ĐB Þ f¢(x)³ 0 Bên phái: h.số NB Þ f¢(x) £ 0. I. KHÁI NIỆM CỰC ĐẠI, CỰC TIỂU Định nghĩa: Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) và điểm x0 Î (a; b). a) f(x) đạt CĐ tại x0 Û $h > 0, f(x) < f(x0), "x Î S(x0, h)\ {x0}. b) f(x) đạt CT tại x0 Û $h > 0, f(x) > f(x0), "x Î S(x0, h)\ {x0}. Chú ý: a) Điểm cực trị của hàm số; Giá trị cực trị của hàm số; Điểm cực trị của đồ thị hàm số. b) Nếu y = f(x) có đạo hàm trên (a; b) và đạt cực trị tại x0 Î (a; b) thì f¢(x0) = 0. 10' Hoạt động 2: Tìm hiểu điều kiện đủ để hàm số có cực trị · GV phác hoạ đồ thị của các hàm số: a) b) Từ đó cho HS nhận xét mối liên hệ giữa dấu của đạo hàm và sự tồn tại cực trị của hàm số. · GV hướng dẫn thông qua việc xét hàm số . · a) không có cực trị. b) có CĐ, CT. II. ĐIỀU KIỆN ĐỦ ĐỂ HÀM SỐ CÓ CỰC TRỊ Định lí 1: Giả sử hàm số y = f(x) liên tục trên khoảng K = và có đạo hàm trên K hoặc K \ {x0} (h > 0). a) f¢(x) > 0 trên , f¢(x) < 0 trên thì x0 là một điểm CĐ của f(x). b) f¢(x) < 0 trên , f¢(x) > 0 trên thì x0 là một điểm CT của f(x). Nhận xét: Hàm số có thể đạt cực trị tại những điểm mà tại đó đạo hàm không xác định. 15' Hoạt động 3: Áp dụng tìm điểm cực trị của hàm số · GV hướng dẫn các bước thực hiện. H1. – Tìm tập xác định. – Tìm y¢. – Tìm điểm mà y¢ = 0 hoặc không tồn tại. – Lập bảng biến thiên. – Dựa vào bảng biến thiên để kết luận. Đ1. a) D = R y¢ = –2x; y¢ = 0 Û x = 0 Điểm CĐ: (0; 1) b) D = R y¢ = ; y¢ = 0 Û Điểm CĐ: , Điểm CT: c) D = R \ {–1} Þ Hàm số không có cực trị. VD1: Tìm các điểm cực trị của hàm sô: a) b) c) 5' Hoạt động 4: Củng cố Nhấn mạnh: – Khái niệm cực trị của hàm số. – Điều kiện cần và điều kiện đủ để hàm số có cực trị. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 1, 3 SGK. Đọc tiếp bài "Cực trị của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: Ngày soạn: Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ Tiết dạy: 05 Bài 2: CỰC TRỊ CỦA HÀM SỐ (tt) I. MỤC TIÊU: Kiến thức: Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Mô tả được các điều kiện đủ để hàm số có điểm cực trị. Kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (3') H. Tìm điểm cực trị của hàm số: ? Đ. Điểm CĐ: (–1; 3); Điểm CT: (1; –1). 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 5' Hoạt động 1: Tìm hiểu Qui tắc tìm cực trị của hàm số · Dựa vào KTBC, GV cho HS nhận xét, nêu lên qui tắc tìm cực trị của hàm số. · HS nêu qui tắc. III. QUI TẮC TÌM CỰC TRỊ Qui tắc 1: 1) Tìm tập xác định. 2) Tính f¢(x). Tìm các điểm tại đó f¢(x) = 0 hoặc f¢(x) không xác định. 3) Lập bảng biến thiên. 4) Từ bảng biến thiên suy ra các điểm cực trị. 15' Hoạt động 2: Áp dụng qui tắc 1 tìm cực trị của hàm số · Cho các nhóm thực hiện. · Các nhóm thảo luận và trình bày. a) CĐ: (–1; 3); CT: (1; –1). b) CĐ: (0; 2); CT: , c) Không có cực trị d) CĐ: (–2; –3); CT: (0; 1) VD1: Tìm các điểm cực trị của hàm số: a) b) c) d) 5' Hoạt động 3: Tìm hiểu qui tắc 2 để tìm cực trị của hàm số · GV nêu định lí 2 và giải thích. H1. Dựa vào định lí 2, hãy nêu qui tắc 2 để tìm cực trị của hàm số? Đ1. HS phát biểu. Định lí 2: Giả sử y = f(x) có đạo hàm cấp 2 trong (h > 0). a) Nếu f¢(x0) = 0, f¢¢(x0) > 0 thì x0 là điểm cực tiểu. b) Nếu f¢(x0) = 0, f¢¢(x0) < 0 thì x0 là điểm cực đại. Qui tắc 2: 1) Tìm tập xác định. 2) Tính f¢(x). Giải phương trình f¢(x) = 0 và kí hiệu xi là nghiệm 3) Tìm f¢¢(x) và tính f¢¢(xi). 4) Dựa vào dấu của f¢¢(xi) suy ra tính chất cực trị của xi. 10' Hoạt động 4: Áp dụng qui tắc 2 để tìm cực trị của hàm số · Cho các nhóm thực hiện. · Các nhóm thảo luận và trình bày. a) CĐ: (0; 6) CT: (–2; 2), (2; 2) b) CĐ: CT: VD2: Tìm cực trị của hàm số: a) b) 5' Hoạt động 5: Củng cố Nhấn mạnh: – Các qui tắc để tìm cực trị của hàm số. – Nhận xét qui tắc nên dùng ứng với từng loại hàm số. Câu hỏi: Đối với các hàm số sau hãy chọn phương án đúng: 1) Chỉ có CĐ. 2) Chỉ có CT. 3) Không có cực trị. 4) Có CĐ và CT. a) b) c) d) a) Có CĐ và CT b) Không có CĐ và CT c) Có CĐ và CT d) Không có CĐ và CT · Đối với các hàm đa thức bậc cao, hàm lượng giác, nên dùng qui tắc 2. · Đối với các hàm không có đạo hàm không thể sử dụng qui tắc 2. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 2, 4, 5, 6 SGK. IV. RÚT KINH NGHIỆM, BỔ SUNG: Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68 Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68 Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68 Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68 Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68 Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68 Gi¸o ¸n 10,11,12 so¹n theo s¸ch chuÈn kiÕn thøc kü n¨ng §óNG THEO S¸CH CHUÈN KIÕN THøC MíI LI£N HÖ §T 0168.921.86.68

File đính kèm:

  • docGIAO AN TOAN DAI SO 12 CHUAN 2014.doc
Giáo án liên quan