Kỳ thi tuyển sinh lớp 10 THPT năm học 2013 – 2014 môn thi: Toán

Câu 3: (2,0 điểm)

Cho đường thẳng và parabol .

a) Tìm để đi qua .

b) Tìm để đường thẳng cắt parabol tại hai điểm phân biệt có hoành độ lần lượt là thỏa mãn điều kiện .

Câu 4: (3,0 điểm)

Cho đường tròn (O;R) đường kính EF. Bán kính IO vuông góc với EF, gọi J là điểm bất kỳ trên cung nhỏ EI (J khác E và I), FJ cắt EI tại L, kẻ LS vuông góc với EF (S thuộc EF).

a) Chứng minh tứ giác IFSL nội tiếp.

b) Trên đoạn thẳng FJ lấy điểm N sao cho FN=EJ. Chứng minh rằng, tam giác IJN vuông cân.

c) Gọi d là tiếp tuyến của (O) tại E. Lấy D là điểm nằm trên d sao cho hai điểm D và I nằm trên cùng một nửa mặt phẳng bờ là đường thẳng EF và . Chứng minh rằng đường thẳng FD đi qua trung điểm của đoạn thẳng LS.

 

doc1 trang | Chia sẻ: baoan21 | Lượt xem: 1254 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Kỳ thi tuyển sinh lớp 10 THPT năm học 2013 – 2014 môn thi: Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC & ĐÀO TẠO THANH HÓA ĐỀ CHÍNH THỨC Đề B KỲ THI TUYỂN SINH LỚP 10 THPT Năm học 2013 – 2014 Môn thi: Toán Ngày thi: 12 tháng 7 năm 2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Cho phương trình với các hệ số . a. Tính tổng: b. Giải phương trình trên. 2. Giải hệ phương trình . Câu 2: (2,0 điểm). Cho biểu thức với a) Rút gọn biểu thức . b) Tính giá trị của khi . Câu 3: (2,0 điểm) Cho đường thẳng và parabol . a) Tìm để đi qua . b) Tìm để đường thẳng cắt parabol tại hai điểm phân biệt có hoành độ lần lượt là thỏa mãn điều kiện . Câu 4: (3,0 điểm) Cho đường tròn (O;R) đường kính EF. Bán kính IO vuông góc với EF, gọi J là điểm bất kỳ trên cung nhỏ EI (J khác E và I), FJ cắt EI tại L, kẻ LS vuông góc với EF (S thuộc EF). a) Chứng minh tứ giác IFSL nội tiếp. b) Trên đoạn thẳng FJ lấy điểm N sao cho FN=EJ. Chứng minh rằng, tam giác IJN vuông cân. c) Gọi d là tiếp tuyến của (O) tại E. Lấy D là điểm nằm trên d sao cho hai điểm D và I nằm trên cùng một nửa mặt phẳng bờ là đường thẳng EF và . Chứng minh rằng đường thẳng FD đi qua trung điểm của đoạn thẳng LS. Câu 5: (1,0 điểm) Cho thỏa mãn . CMR: .

File đính kèm:

  • docĐề thi 2013 - 2014 Lớp 10 - Thanh Hóa.doc
Giáo án liên quan