Đề tài Đổi mới phương pháp dạy toán có lời văn ở cấp tiểu học

Toán học có vị trí rất quan trọng phù hợp với cuộc sống thực tiễn đó cũng là công cụ cần thiết cho các môn học khác và để giúp học sinh nhận thức thế giới xung quanh, để hoạt động có hiệu quả trong thực tiễn.

Khả năng giáo dục nhiều mặt của môn toán rất to lớn, nó có khả năng phát triển tư duy lôgic, phát triển trí tuệ. Nó có vai trò to lớn trong việc rèn luyện phương pháp suy nghĩa, phương pháp suy luận, phương pháp giải quyết vấn đề có suy luận, có khoa học toàn diện, chính xác, có nhiều tác dụng phát triển trí thông minh, tư duy độc lập sáng tạo, linh hoạt.góp phần giáo dục ý trí nhẫn nại, ý trí vượt khó khăn

 

doc18 trang | Chia sẻ: haohao | Lượt xem: 1497 | Lượt tải: 3download
Bạn đang xem nội dung tài liệu Đề tài Đổi mới phương pháp dạy toán có lời văn ở cấp tiểu học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ên của giáo viên đều được thể hiện cụ thể trên bài soạn đủ các bước, đủ các yêu cầu và thể hiện được công việc của thầy và trò trong giờ giải toán. 2. Quá trình chuẩn bị của học sinh: Đối với học sinh đã đạt được giáo dục và bồi dưỡng ý thức thích học toán, có thú vị, hào hứng trong hoạt động học toán, có phương pháp học bộ môn toán, có thao tác về giải toán phải có đầy đủ các dụng cụ học toán và chuẩn bị đầy đủ cho phù hợp với từng tiết học. Đối vưói học sinh khá, giỏi trong những buổi bồi dưỡng riêng biệt cần có thêm sách giáo khoa về luyện giải, sách giáo khoa nâng cao... Song không thể thiếu được những kiến thức về toán học có hệ thống logic từ lớp dưới, từ bài học trước phải chắc chắn làm cơ sở, nền tảng giúp học sinh tự tin trong hoạt động thực hanh, trong việc tiếp thu kiến thức. Ví dụ như khi học giải toán vê "Bài toán tìm hai số khi biết tổng và tỉ số của hai số đó" thì các em đã được học bài trước là "Tỉ số"... Chính vì sự liên quan hệ thống giữa kiến thức đã học với kiến thức mới nên học sinh phải làm hết và đầy đủ các bài tập, học thuộc các quy tắc, công thức toán. Để học sinh cso thói quen học bài, làm bài đầy đủ chúng tôi đã thống nhất với giáo viên trong tổ là bố trí mỗi bàn có một bàn trưởng là học sinh khá toán, thường xuyên kiểm tra bài học, bài làm ở nhà của các bạn trong bàn vào giờ ôn bai, soát bài và chỉ ra chỗ đúng sai trong bài tập của bạn giúp bạn cùng tiến bộ (xây dựng đôi bạn thân...) VIII. QUY TRÌNH THỰC HIỆN KHI DẠY GIẢI TOÁN CÓ LỜI VĂN: - Giải toán đối với học sinh là một hoạt động trí tuệ khó khăn, phức tạp. Việc hình thành kỹ năng giải toán hơn nhiều so với kĩ năng tính vì bài toán giải là sự kết hợp đa dạng hoá nhiều khái niệm quan hệ toán học, ....chính vì vậy đặc trưng đó mà giáo viên cần phải hướng dẫn cho học sinh có được thao tác chung trong quá trình giải toán sau: Bước 1: Đọc kỹ đề bài: Có đọc kỹ đề bài học sinh mới tập trung suy nghĩ về ý nghĩa nội dung của bàit oán và đặc biệt chú ý đến câu hỏi bài toán. Chúng tôi có rèn cho học sinh thói quen chưa hiểu đề toán thì chưa tìm cách giải. Khi giải bài toán ít nhất đọc từ 2 đến 3 lần. Bước 2: Phân tích tóm tắt đề toán. Để biết bài toán cho biết gì? Hỏi gì? (tức là yêu cầu gì?) Đây chính là trình bày lại một cách ngắn gọn, cô đọng phần đã cho và phần phải tìm của bài toán để làm rõ nổi bật trọng tâm, thể hiện bản chất toán học của bài toán, được thể hiện dưới dạng câu văn ngắn gọn hoặc dưới dạng các sơ đồ đoạn thẳng. Bước 3: Tìm cách giải bài toán: Thiết lập trình tự giải, lựa chọn phép tính thích hợp. Bước 4: Trình bày bài giải: Trình bày lời giải (nói - viết) phép tính tương ứng, đáp số, kiểm tra lời giải (giải xong bài toán cần thử xem đáp số tìm được có trả lời đúng câu hỏi của bài toán, có phù hợp với các điều kiện của bài toán không? (trong một số trường hợp nên thử xem có cách giải khác gọn hơn, hay hơn không? IX. PHƯƠNG PHÁP DẠY DẠNG BÀI TOÁN" TÌM HAI SỐ KHI BIẾT TỔNG VÀ TỈ SỐ CỦA HAI SỐ ĐÓ" Ở LỚP 4: Đối với dạng toán này thì có các dạng bài nổi bật sau: Dạng bài tỉ số của hai số là một số tự nhiên (có nghĩa là so sánh giá trị của số lớn với giá trị của số bé). Ví dụ 1: Có 45 tấn thóc chứa trong hai kho. Kho lớn chứa gấp 4 lần kho nhỏ. Hỏi số thóc chứa trong mỗi kho là bao nhiêu tấn? Bước 1: 2 học sinh đọc to đề toán (cả l ớp đọc thầm theo bạn và gạch chân = bút chì dưới từ gấp 4 lần) Bước 2: Phân tích - tóm tắt bài toán. Cho học sinh phân tích bài toán bằng 3 câu hỏi: 1. Bài toán cho biết gì? (tổng số thóc ở hai kho là 45 tấn. Kho lớn gấp 4 lần kho nhỏ) "tỷ số của bài toán chính là điều kiện của bài toán". 2. Bài toán hỏi gì? (số thóc ở mỗi kho) "tức là số thóc ở kho nhỏ và số thóc ở kho lớn". 3. Bài toán thuộc dạng toán gì? (bài toán tìm hai số khi biết tổng và tỷ số của hai số đó) Từ cách trả lời trên học sinh sẽ biết cách vẽ sơ đồ tóm tắt bài toán, thiết lập được mối quan hệ giữa cái đã cho trong bài bằng ngôn ngữ toán học ghi kí hiệu ngắn gọn bằng cách ghi tóm tắt đề toán. Đối với dạng toán này, thì học sinh chủ yếu phải minh hoạ bằng sơ đồ hình vẽ, tức là biểu thị một cách trực quan các mối quan hệ giữa các đại lượng của bài toán. 45 tấn ? tấn ? tấn Tóm tắt: Kho nhỏ: Kho lớn: Bước 3: Tìm cách giải bài toán: Trình bày bài giải: Dựa vào kế hoạch giải bài toán ở trên mà học sinh sẽ tiến hành giải như sau: Tổng số phần bằng nhau là: 1 + 4 = 5 (phần) Số thóc ở kho nhỏ là: 45 : 5 = 9 (tấn) Số thóc ở kho lớn là: 9 x 4 = 36 (tấn) Hỏi còn cách giải nào khác? T số thóc - kho nhỏ = số thóc kho lớn [hay 45 - 9 = 36 (tấn)] Thử lại: Là quá trình kiểm tra việc thực hiện phép tính độ chính xác của quá trình lập luận. 9 + 36 = 45 (tấn) tổng số thóc. Hay có thể 36 : 9 = 4 (lần) tỉ số Qua các thao tác giải trên chúng tôi đã hình thành dần dần cho học sinh trong các giờ dạy toán dưới sự tổ chức hướng dẫn của giáo viên đối với tất cả các dạng bài. Từ phương pháp dạy như trên giáo viên có thể áp dụng với tất cả những loại bài như sau: * Tương tực đối với dạng "Bài toán tìm hai số khi biết tổng và tỉ số của hai số đó". Với tỉ số là một phân số (tức là so sánh giá trị của số bé với giá trị của số lớn). Ví dụ 2: Mẹ mua 20 kg gạo trong đó khối lượng gạo nếp bằng 2/3 khối lượng gạo tẻ. Tính số kg gạo mỗi loại? 20 kg ? kg ? kg 2/3 cho ta biết. Nếu gạo tẻ được chia làm 3 phần bằng nhau thì số gạo nếp sẽ chiếm 2 phần và học sinh tóm tắt như sau: Số gạo tẻ: Số gạo nếp: * Đối với loại bài: Đặt đề toán theo sơ đồ rồi giải bài toán đó. Ví dụ 3: Vải trắng: Vải hoa: 1. Học sinh dựa vào sơ đồ để xác định được dạng toán. 2. Đặt đề toán 3. Giải bài toán * Dạng toán này còn có những bài toán nâng cao lên thành "Tìm ba số khi biết tổng và tỉ số của ba số đó". Ví dụ 4: Lớp 4E nhận chăm sóc 180 cây trồng ở ba khu vực. Số cây ở khu vực hai gấp 2 lần số cây ở khu vực một, số cây ở khu vực một bằng 1/3 số cây ở khu vực ba. Tính số cây ở mỗi khu vực. ? cây Đối với bài tập này thì giáo viên sẽ hướng dẫn gợi ý học sinh dựa vào mối quan hệ giữa các tỉ số của 3 số đó trong bài để biểu diễn trên sơ đồ tóm tắt bài toán. 180 cây ? cây ? cây Số cây ở khu vực I: Số cây ở khu vực II: Số cây ở khu vực III: Bài tập này học sinh sẽ tiến hành làm tương tực như "Bài toán tìm hai số khi biết tổng và tỉ số của hai số" Nhìn vào sơ đồ tóm tắt học sinh sẽ tìm ra cách giải và giải bài toán * Ở dạng toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" còn ở dưới dạng ẩn: Ví dụ 5: Một hình chữ nhật có P = 270m. Số đo chiều rộng bằng 1/4 số đo chiều dài. Tính diện tích hình chữ nhật đó. (Giáo viên hướng dẫn học sinh bằng hệ thống câu hỏi gợi ý để học sinh tìm ra cách giải và giải bài toán) Đối với ví dụ này là sự kết hợp với các yếu tố hình học, từ đó củng cố kiến thức nhiều mặt cho học sinh. Như vậy, dù bài toán "Tìm hai số khi biết tổng và tỉ số của hai số đó" hay bất kì ở dạng toán nào thì đều quan trọng đối với học sinh là phải biết cách tóm tắt đề toán. Nhìn vào tóm tắt xác định đúng dạng toán để tìm chọn phép tính cho phù hợp và trình bày giải đúng. Tất cả những việc làm trên của giáo viên đều nhằm thực hiện tiết dạy giải toán theo phương pháp đổi mới và rèn kĩ năng cho học sinh khi giải bất kì loại toán nào các em cũng được vận dụng. PHẦN III: KẾT THÚC VẤN ĐỀ I. KẾT QUẢ: Trong nhiều năm phương pháp dạy học của giáo viên nói chung và của các đồng chí trong tổ nhóm chúng tôi nói riêng còn nhiều hạn chế trong việc phát huy tiềm ẩn trong mỗi học sinh. Do vậy khắc phục yếu kém cho học sinh trong môn toán nói chung và việc giải toán có lời văn nói riêng chính là việc đổi mới phương pháp dạy học theo hướng thầy thiết kế trò thi công, thầy chỉ giữ vai trò tổ chức điều khiển và hướng dẫn học sinh trong quá trình tìm ra tri thức mới. Học sinh quá trình tìm ra tri thức mới. Học sinh thực hành và tự đúc kết ra kinh nghiệm cho bản thân. Với việc đổi mới phương pháp dạy toán có lời văn như trên chúng tôi tự đánh giá khẳng định đã đạt được kết quả như sau: Đối với giáo viên: Đã tự học tập và có kinh nghiệm trong dạy toán nói chung và trong việc dạy giải toán rói riêng, đồng thời giúp cho bản thân nâng cao được tay nghề và đã áp dụng được các phương pháp đổi mới cho tất cả các môn học khác. Đối với học sinh: Các em đã nắm chắc được từng dạng bài, biết cách tóm tắt, biết cách phân tícah đề, lập kế hoạch giải, phân tích kiểm tra bài giải. Vì thế nên kết quả môn toán của các em có nhiều tiến bộ. Giờ học toán là giờ học sôi nổi nhất. Cụ thể kết quả kiểm tra môn toán cuối học kỳ I là: Tóm tắt bài toán Chọn và thực hiện phép tính đúng Lời giải và đáp số Đạt Chưa đạt Đúng Sai Đúng Sai 96 em = 84% 18 em = 16% 98 em = 85% 16em = 15% 102 em = 89% 12 em = 11% Như vậy rèn cho các em có phương pháp học là biện pháp tốt nhất của người làm công tác giáo dục II. KẾT LUẬN Để có kết quả giảng dạy tốt đòi hỏi người giáo viên phải nhiệt tình và có phương pháp giảng dạy tốt. Có một phương pháp giảng dạy tốt là một quá trình tìm tòi, học hỏi và tích lũy kiến thức, kinh nghiệm của bản thân mỗi người. Là người giáo viên được phân công giảng dạy khối lớp 4. Chúng tôi nhận thấy việc tích luỹ kiến thức cho các em là cần thiết, nó tạo tiền đề cho sự phát triển trí thức của các em "nền" chắc sẽ tạo bàn đạp và đà để tiếp tục học lên lớp trên và hỗ trợ các môn học khác. Trước thực trạng học toán của học sinh lớp 4 những năm giảng dạy, chúng tôi mạnh dạn đưa ra một số ý kiến trên, nhằm mong sự góp ý của đồng nghiệp. Khi làm một việc có kết quả như mình mong muốn phải có sự kiên trì và thời gian không phải một tuần, hai tuần là học sinh sẽ có khả năng giải toán tốt, mà đòi hỏi phải tập luyện trong một thời gian dài trong suốt cả quá trình học tập của các em. Giáo viên chỉ là người hướng dẫn, đưa ra phương pháp, còn học sinh sẽ là người đóng vai trò hoạt động tích cực tìm ra tri thức và lĩnh hội nó và biến nó là vốn tri thức của bản thân. Rất mong sự đóng góp ý kiến của đồng nghiệp để phương pháp giảng dạy của chúng tôi được nâng cao hơn. Tôi xin chân thành cảm ơn sự đóng góp ý kiến của các đồng nghiệp.

File đính kèm:

  • doc0401003.doc