Tiết 57: Kiểm tra chương III - Hình học

I. MỤC TIÊU

- Kiểm tra việc tiếp thu kiến thức của HS trong chương và vận dụng kiến thức vào giải các bài tập.

- Phát hiện được những sai sót HS thường mắc phải để kịp thời uốn nắn, bổ sung trong quá trình dạy học các bài tiếp theo.

- Hiểu được những khó khăn của HS đối với mỗi kiến thức trong chương để có những điều chỉnh phương pháp dạy học phù hợp

II. Ma trận đề

 

doc7 trang | Chia sẻ: baoan21 | Lượt xem: 1145 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Tiết 57: Kiểm tra chương III - Hình học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 57: Kiểm tra chương III- hình học I. Mục tiêu kiểm tra: I. MỤC TIÊU - Kiểm tra việc tiếp thu kiến thức của HS trong chương và vận dụng kiến thức vào giải các bài tập. - Phát hiện được những sai sót HS thường mắc phải để kịp thời uốn nắn, bổ sung trong quá trình dạy học các bài tiếp theo. - Hiểu được những khó khăn của HS đối với mỗi kiến thức trong chương để có những điều chỉnh phương pháp dạy học phù hợp II. Ma trận đề Mức độ Chủ đề Nhận biết Thông hiểu Vận dụng Tổng VD thấp VD cao 1. Liên hệ giữa cung, dây và đường kính, Các loại góc với đường tròn Nhận biết được các loại góc trong đường tròn Nắm được đ/lí về số đo các góc với đường tròn để tính được sđ các góc đó Số câu Số điểm Tỉ lệ % 1 câu- câu 1 1,5 điểm 15% 1 câu- câu 3 2 điểm 20% 2 câu 3,5 điểm 35% 2.Quĩ tich cung chứa góc, tứ giác nội tiếp Vận dụng định lí về tứ giác nội tiếp, bài toán quĩ tích cung chứa góc và t/c về góc với đường tròn để c/m tứ giác nội tiếp, c/m các góc bằng nhau, c/m điểm là tâm đường tròn Số câu Số điểm Tỉ lệ % 3 câu- 4a,b,c 3,5 điểm 35% 1 câu – 4d 1 điểm 10% 4 câu 4,5 điểm 45% 3. Độ dài đường tròn, độ dài cung. Diện tích hình tròn, hình quạt Tính được độ dài cung tròn, diện tích hình quạt tròn Số câu Số điểm Tỉ lệ % 1 câu- câu 2 2 điểm 20% 1 câu- 2 điểm 20% 1 câu 1,5 điểm 15% 2 câu 4 điểm 40% 3 câu 3,5 điểm 35% 1 câu 1 điểm 10% 7 câu 10 điểm 100% III. Đề bài Đề 1 Bài 1. (1,5 điểm). Hãy nêu tên mỗi góc ; ; ; ; trong các hình dưới đây. _ F _ S _ G _ R _ K _ I _ H _ M _ O _ B _ A _ D _ k _ H _ P _ Q _ R Bài 2: 2 điểm Cho hình vẽ bên , biết MON = 1200 và R = 3cm Tính độ dài cung MaN b. Tính diện tích hình quạt MONaM a O N M Bài 3: 2 điểm Cho hình vẽ bên, biết Cm là tiếp tuyến tại C của đường tròn, ADC = 600, AB là đương kính của đường tròn, hãy tính a. Số đo của góc BAC b. Số đo góc AOC c. Số đo của góc ACm d. Số đo góc ABC Bài 4 ( 4,5 điểm) Cho tam giác ABC vuông ở A. Trên cạnh AC lấy điểm M, dựng đường tròn (O) có đường kính MC. Đường thẳng BM cắt đường tròn (O) tại D. Đường thẳng AD cắt đường tròn (O) tại S. Chứng minh ABCD là tứ giác nội tiếp . *)Chứng minh CA là tia phân giác của góc SCB. *) Chứng minh DM là tia phân giác của góc ADE. Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. Chứng minh điểm M là tâm đường tròn nội tiếp tam giác ADE. IV. Hướng dẫn chấm Bài 1: Mỗi ý đúng cho 0,3 điểm : Góc tạo bởi tia tt và dây cung :Góc ở tâm : Góc nội tiếp : Góc có đỉnh ở bên trong đường tròn : Góc có đỉnh ở bên ngoài đường tròn Bài 2: Độ dài cung MaN là: l = = 6,28 (cm) Diện tích hình quạt là: Squat = = 9, 42(cm2) 1 điểm 1 điểm Bài 3: a.Vì ADC = 600 nên sđcungAC = 1200 AB là đường kính vậy sđcungBC = 600 Suy ra BAC = sđcungBC = 300 ( góc nội tiếp chắn cung 600) b. Ta có AOC = sđcungAC=1200 ( góc ở tâm chắn cung 1200) c. ACm = sđcungAC=600 ( góc giữa tt và dây cung chắn cung 1200) d. ABC =ADC = 600 ( hai góc nội tiếp cùng chắn cung AC) 0,5 điểm 0,5 điểm 0,5 điểm 0,5 đ điểm Bài 4: Hình vẽ có hai trường hợp: vẽ hình đúng 0,5 điểm Tia CS nằm giữa hai tia CD và CE Tia CD nằm giữa hai tia CS và CE Ta có ÐCAB = 900 ( vì tam giác ABC vuông tại A); Ð MDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn đường kính BC => ABCD là tứ giác nội tiếp được một đường tròn đường kính BC 0,5 0,5 2. *) ABCD là tứ giác nội tiếp đường kính BC => ÐD1= ÐC3 ( nội tiếp cùng chắn cung AB). ÐD1= ÐC3 => Cung SM = Cung EM => ÐC2 = ÐC3 (hai góc nội tiếp đường tròn (O) chắn hai cung bằng nhau) => CA là tia phân giác của ÐSCB. *)Theo trên Ta có Cung SM = Cung EM => ÐD1= ÐD2 => DM là tia phân giác của góc ADE (1) 1,0 0,5 3. Xét DCMB Ta có BA^CM; CD ^ BM; ME ^ BC Vậy BA, EM, CD là ba đường cao của CMB nên BA, EM, CD đồng quy. 1,0 4. Ta có ÐMEC = 900 (nội tiếp chắn nửa đường tròn (O)) => ÐMEB = 900. Tứ giác AMEB có ÐMAB = 900 ; ÐMEB = 900 => ÐMAB + ÐMEB = 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn => ÐA2 = ÐB2 . Tứ giác ABCD là tứ giác nội tiếp => ÐA1= ÐB2 ( nội tiếp cùng chắn cung CD) => ÐA1= ÐA2 => AM là tia phân giác của góc DAE (2) Từ (1) và (2) Ta có M là tâm đường tròn nội tiếp tam giác ADE 1.0 KQ bài KT Giỏi: Khá: TB Yếu: Rút kinh nghiệm sau bài KT: Đề 2: Bài 1. (1,5 điểm). Hãy nêu tên mỗi góc ; ; ; ; trong các hình dưới đây. _ F _ S _ G _ R _ K _ I _ H _ M _ O _ B _ A _ D _ k _ H _ P _ Q _ R Bài 2: 2 điểm cho hình vẽ biết đường kính BC = 12 cm , ACB = 400 : tính a/ số đo cung AnB b/ độ dài cung AnB c/Tính diện tích hình quạt tròn OAmC m Bài 3( 2 đ) :Cho hình vẽ biết số đo cung AmB bằng 1000 , _ m _ I _ 50 ° _ 100 ° _ n _ D _ O _ C _ M _ A _ B số đo cung DnC bằng 500 Tính : AOB , ADB , DIC, AMB Bài 4: ( 4 đ ) Cho tam gi¸c nhän ABC néi tiÕp ®­êng trßn (O) , hai ®­êng cao BD vµ C E của tam giác ABC cắt nhau tại H .Chøng minh : a/ Các tứ giác AEHD , BEDC nội tiếp b/ AED ~ ACB vµ AD.AC = AE.AB c/ AH BC d/ AO DE IV. Hướng dẫn chấm Bài 1: Mỗi ý đúng cho 0,3 điểm : Góc tạo bởi tia tt và dây cung :Góc ở tâm : Góc nội tiếp : Góc có đỉnh ở bên trong đường tròn : Góc có đỉnh ở bên ngoài đường tròn Bài 2: a). Gãc ACB = 1/2 s®CungAnB => s®CungAnB = 2.ACB = 800 b). d= 12 cm => R = 6cm Vậy lcung AmB = ( cm ) c) S® cungAmC = 1800 - sdcung AnB= 1800 - 800 = 1000 S OamC = ( cm2 ) Bài 3: Häc sinh ¸p dông tÝnh chÊt c¸c gãc vµ tÝnh ®­îc sè ®o cña mçi gãc _ m _ I _ 50 ° _ 100 ° _ n _ D _ O _ C _ M _ A _ B AOB = 100 0 ADB = 500 DIC= 750 AMB = 250  HD: Vẽ hình đúng câu a a) Chứng minh được tø gi¸c AEHD néi tiÕp tø gi¸c BEDC néi tiÕp b) ABC = ADE AED ~ ACB suy ra AD.AC = AE.AB c) Chøng minh ®­îc H lµ trùc t©m cña tam gi¸c Suy ra AH BC d) KÎ ®­êng kÝnh AOM, gäi giao ®iÓm cña AM vµ ED lµ I chøng minh ®­îc tø gi¸c CDIM néi tiÕp suy ra DI M + DCM = 1800 mµ DCM = 90 0 Nªn DIM = 900 Suy ra AO DE 0,5 0,75 ® 0,75 đ 0,5 đ 0,5® 0,5® 0, 5® 0,5 ® 0,5 ®

File đính kèm:

  • docKT chuong III hinh.doc