MỤC LỤC
STT Nội dung Trang
PHẦN I: ĐẶT VẤN ĐỀ 1
1 I. Lý do chọn sáng kiến 1
2 1.Cơ sở lí luận 1
3 2.Cơ sở thực tiễn 1
4 II. Mục đích nghiên cứu 1
5 III. Đối tượng phạm vi nghiên cứu 2
6 IV. Kế hoạch nghiên cứu 2
7 V. Thời gian và phạm vi áp dụng 2
PHẦN II: NỘI DUNG 2
8 1.Cơ sở lí luận 3
9 II. Thực trạng vấn đề 3
10 1.Đặc điểm tình hình địa phương, nhà trường, nhiệm vụ được giao 3
11 2. Thực trạng vấn đề 4
12 III. Các giải pháp thực hiện 5
13 1.Một số dạng toán điển hình về phân số 5
14 2.Hệ thống kiến thức cơ bản và mở rộng kiến thức cho học sinh khi giải các dạng toán về phân số 6
15 IV. Kết quả đạt được 22
PHẦN III: KẾT LUẬN 22
TÀI LIỆU THAM KHẢO 25
38 trang |
Chia sẻ: ngocnga34 | Lượt xem: 525 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Sáng kiến kinh nghiệm Dạy học toán lớp 5 phần phân số, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
chỉ số sách 45 cuốn là: (ngăn thứ nhất)
Số sách ở ngăn thứ nhất là: (cuốn)
Số sách ở ngăn thứ hai là: (cuốn)
Số sách ở ngăn thứ ba là: (cuốn)
Đáp số: Ngăn I: 60 cuốn
Ngăn II: 45 cuốn
Ngăn III: 90 cuốn
Dạng 6: Tìm số trung bình cộng.
Bài toán1: Tìm 4 phân số tối giản biết: Trung bình cộng của số thứ nhất và số thứ hai là . Trung bình cộng của số thứ nhất, số thứ hai và thứ ba là: . Trung bình cộng của cả 4 số là: , và số đầu kém số trung bình cộng của hai số cuối là đơn vị.
Giải
Tổng số của hai số đầu là: (1)
Tổng số của ba số đầu là: (2)
Tổng số của cả 4số là: (3)
Từ (1) và (2) ta thấy số thứ ba là:
Từ (2) và (3) ta thấy số thứ tư là:
Trung bình của hai số cuối là:
Số thứ nhất là:
Số thứ hai là:
Đáp số:
Bài toán 2. Cho hai số là 4/3 và . Số thứ ba bằng trung bình
cộng của hai số đó. Số thứ tư lớn hơn trung bình cộng của cả 3 số là . Tìm trung bình cộng của 4 số đó ?
Giải
Số thứ ba là:
Số thứ tư là :
Trung bình cộng của cả bốn số là:
Dạng 7: Làm tròn phân số thành đơn vị.
Bài toán: Hôm qua, Cô Bình bán tấm vải giá 20 000đ một mét thì lãi 200 000đ. Hôm nay, cô Bình bán phần còn lại của tấm vải giá 18 000đ một mét thì lãi 90 000đ. Hỏi tấm vải dài bao nhiêu mét ?
Giải
( Làm tròn: Giả sử ngày nào cũng bán hết một tấm vải)
Phân số chỉ số vai ban ngày hôm nay là: (tấm vải)
Nếu hôm qua, bán được cả tấm thì lãi:
(đồng)
Nếu hôm nay, bán được cả tấm thì lãi:
(đồng)
Số tiền lãi hôm qua hơn tiền lãi hôm nay là:
320.000 – 240.000 = 80.000 (đồng)
Mỗi mét vải hôm qua bán đắt hơn hôm nay là:
20.000 – 18.000 = 2000 (đồng)
Vậy tấm vải dài là: 80.000 : 2000 = 40 (m).
Đáp số: 40m vải.
Dạng 8: Giả thiết tạm về phân số.
Bài toán: Một người buôn băng đĩa đã mua vào 7.000đ một đĩa. Sau đó, bán lại số băng đĩa với giá 10.000đ một băng và chỗ còn lại bán giá 9.000đ một băng. Bán xong, người đó được lãi 56.000đ. hãy tính số băng đĩa người đó đã mua vào ?
Giải
Giả sử chỉ có 5 băng đĩa thì lần đầu bán 4 băng, còn lần sau bán một băng.
Giá bán 4 băng lần đầu và 1 băng lần sau là:
(đồng)
Giá mua vào 5 băng đó là: ( đồng)
Tiền lãi khi bán 5 băng đó là: 49.000 – 35.000 = 14.000(đồng)
Vậy số băng đĩa đã mua vào so với 5 băng thì gấp:
560.000 : 10.000 = 40 (lần)
Số băng đĩa đó người đó đã mua vào là: (băng đĩa)
Đáp số: 200 băng đĩa.
Dạng 9: Loại khử về phân số
Bài toán: Cả đàn trâu và bò có tất cả 50 con. Biết rằng nếu số trâu và số bò gộp lại thì được 27 con. Tính số trâu? số bò?
Giải:
Viết tắt số con trâu là “trâu”, số con bò là “bò”
Theo bài ra ta có: trâu + bò = 50 con (1)
trâu + bò = 27 con (2)
Nhân cả hai vế của (1) với ta có:
trâu + bò = (con)(3)
Đem từng vế của (3) trừ đi từng vế của (2). Ta có:
trâu - trâu =
trâu = (con)trâu = (con)
Số con bò là: 50 – 30 = 20 (con)
Đáp số: trâu: 30 con
bò: 20 con
Dạng 10: Tính ngược về phân số.
Bài toán: Tìm một phân số biết rằng nếu đem số đó chia cho 3, được bao nhiêu chia trừ đi thì được phân số mới .
Giải
(Với dạng bài toán này, hướng dẫn giải bằng cách vẽ lưu đồ)
Phân số trước khi trừ đi là: + =
Phân số trước khi chia cho 3 hay phân số cần tìm là:
Đáp số:
Khi dạy và học giải toán nâng cao về phân số tôi thường sử dụng các biện pháp và hình thức tổ chức dạy học:
1. Lồng vào nội dung bài học:
Biện pháp này giúp học sinh mở rộng kiến thức ngay từ nội dung bài học trên lớp. Học sinh được vận dụng thực hành những bài toán nâng cao trên cơ sở những kiến thức vừa tiếp thu trong kiến thức sách giáo khoa; biện pháp này tuy có hiệu quả cao nhưng ít giáo viên sử dụng bởi phần lớn giáo viên đều ngại nghiên cứu sách giáo khoa, sách nâng cao, một nguyên nhân nữa nếu không nghiên cứu kĩ thì dẫn đến nội dung tiết học nặng nề, quá tải. Do vậy, với biện pháp này giáo viên sử dụng trong nội dung tiết học toán vào buổi thứ hai trong ngày sẽ có hiệu quả cao bởi học sinh được củng cố, mở rộng kiến thức ngay sau khi học nội dung cơ bản.
2. Tổ chức nhóm học sinh năng khiếu.
Đây là biện pháp mà nhiều trường, nhiều giáo viên sử dụng. Việc tổ chức theo nhóm học sinh năng khiếu có thuận lợi là trình độ học sinh đồng đều. Bài tập nâng cao sẽ phù hợp với ngưỡng nhận thức của học sinh, điều đó dẫn đến việc không mất nhiều thời gian cho một đơn vị kiến thức. Hơn nữa, Việc tổ chức theo nhóm học sinh năng khiếu sẽ gây cho các em hứng thú học tập, cạnh tranh lành mạnh khi tìm và phát hiện ra lời giải hay và học sinh sẽ phát huy hết mặt mạnh, sở trường của mình.
3. Tổ chức sinh hoạt câu lạc bộ ( hoạt động ngoại khoá).
Đây là hình thức tổ chức nói chuyện theo chuyên đề, học sinh sẽ được mở rộng kiến thức kết hợp củng cố kiến thức về một mảng nào đó về phân số hay số thập phân...Tuy nhiên với biện pháp này cũng không được áp dụng thường xuyên vì khả năng tập trung nghe và ghi nhớ của học sinh chưa cao, các em mau chán và để ý sang những vấn đề khác. Hơn nữa biện pháp này được tổ chức không chu đáo sẽ dẫn đến việc làm hình thức kém hiệu quả vì học sinh phải thụ động lĩnh hội kiến thức.
4. Tổ chức thi giải toán trên mạng, báo toán tuổi thơ...
Việc tổ chức cho học sinh thi giải toán trên báo sẽ tạo ra phong trào học tập trong toàn trường. Học sinh được thử sức trên các sân chơi rộng hơn, điều này kích thích học sinh tích cực học tập, chăm đọc sách, báo để tìm đề toán hay, lời giải hay. Việc tổ chức học tập này, ngoài việc học sinh biết giải toán mà còn giúp các em có kĩ năng ra đề toán.
Biện pháp này tuy được ít trường áp dụng nhưng nếu thường xuyên tổ chức cho học sinh thì hiệu quả đem lại không phải là nhỏ.
IV. Kết quả đạt được
- Qua quá trình nghiên cứu và áp dụng các biện pháp trên vào dạy học Toán tôi thấy kết quả học tập môn Toán của các em có sự tiến bộ rõ rệt. Qua kiểm tra, đánh giá cuối năm kết quả đạt được như sau:
Tổng số học sinh
Giới tính
Chất lượng khảo sát (tháng 2/2013)
Ghi chú
Nam
Nữ
Giỏi
Khá
TB
Yếu
30
16
14
22
5
3
0
PHẦN III: KẾT LUẬN
- Giải toán là một hoạt động trí tuệ đòi hỏi sự tìm tòi, sáng tạo. Vì vậy, giải toán cần được coi là một trong những mục tiêu cao nhất của việc dạy học toán ở tiểu học. Như chúng ta đã biết, nếu học toán mà học sinh không biết phương pháp học, không nắm chắc được cách giải cac bài tập sẽ dẫn đến việc chán nản, ngại học hoặc học một cách chống đối. Người giáo viên khi dạy giải toán mà không dạy các em phương pháp giải thì không khác nào tìm đường đi trong bóng đêm. Do vậy, giáo viên phải coi trọng việc dạy cho học sinh cách học, cách giải các bài tập có tính chất bắt buộc đối với học sinh đại trà để đảm bảo yêu cầu chất lượng. Song bên cạnh đó, việc phát hiện những học sinh có năng khiếu để bồi dưỡng nâng cao chất lượng học sinh giỏi là một vấn đề không thể thiếu.
Bài học kinh nghiệm:
- Khi dạy học toán, giáo viên cần phải lưu tâm tới những học sinh có năng khiếu để chú trọng bồi dưỡng. Việc dạy học cho các em cách giải, phương pháp giải các bài toán nâng cao là việc làm thiết thực, giúp học sinh vượt qua khó khăn vướng mắc, tạo cho các em niềm tin, lòng say mê, tìm tòi, sáng tạo trong học toán để nâng cao trí tuệ.
- Trong phạm vi đề tài này, tôi đã cố gắng đề cập tới một số vấn đề cơ bản giúp học sinh nhận biết các dạng toán cơ bản cũng như các dạng toán nâng cao về phân số và cách giải mỗi dạng toán. Trong mỗi dạng toán, tôi đã đưa ra những kiến thức cơ bản, một số ví dụ minh hoạ từ dễ đến khó. Tuy vậy, trong khoảng thời gian có hạn nên tôi chỉ đề cập tới một số dạng bài toán phù hợp với hoàn cảnh nghiên cứu của địa bàn công tác. Với những bài toán có lời văn, tôi đã cố gắng đưa nội dung gắn với thực tế để thông qua việc giải các bài toán đó giúp học sinh nắm được các bước cần thiết của quá trình giải toán và vân dụng ngoài cuộc sống.
Đề xuất những biện pháp dạy - học những kiến thức cơ bản và giải toán nâng cao về phân số.
Việc dạy và học giải toán cho học sinh tiểu học nói chung và việc dạy giải toán nâng cao phần phân số nói riêng là một việc làm công phu, nhiều thời gian và có hệ thống. Nó đòi hỏi mỗi giáo viên phải không ngừng tìm tòi, sáng tạo và đổi mới phương pháp để truyền thụ kiến thức cho học sinh một cách ngắn gọn dễ hiểu. Đối với học sinh, việc nắm vững kiến thức đại trà về phân số đã là khó, do vậy việc làm quen với các dạng toán nâng cao về phân số lại càng khó hơn. Bởi vậy, khi dạy học sinh các kiến thức cơ bản hoặc giải các bài toán nâng cao về phân số, giáo viên cần linh hoạt sử dụng các biện pháp khác nhau nhằm giúp học sinh lĩnh hội được nhiều nhất lượng kiến thức mà giáo viên đã định hướng đưa vào nội dung tiết dạy.
Do điều kiện thời gian và và phạm vi nghiên cứu có hạn nên nên sáng kiến không tránh khỏi sự thiếu sót. Kính mong nhận được sự giúp đỡ của Ban giám hiệu nhà trường , Tổ chuyên môn Phòng giáo dục và tổ chuyên môn Sở giáo dục để sáng kiến này của tôi được hoàn thiện và đầy đủ hơn
Tôi xin chân thành cảm ơn!
Thái Phúc,ngày 20 tháng 3 năm 2013
Người viết
Trần Thị Loan
TÀI LIỆU THAM KHẢO
1. Sách giáo khoa, sách giáo viên Toán lớp 5
2. Phương pháp dạy học môn toán ở tiểu học.(Đỗ Trung Hiệu - Đỗ Đình Hoan)
3. Vấn đề rèn luyện tư duy cho học sinh tiểu học trong việc dạy học giải toán. (Trần Ngọc Lan)
4. Toán nâng cao. (Vũ Dương Thụy - Đỗ Trung Hiệu - Nguyễn Danh Ninh.)
5. Toán tuổi thơ số: 65, 69, 70, 72 (Nhà xuất bản giáo dục năm 2006)
MỤC LỤC
STT
Nội dung
Trang
PHẦN I: ĐẶT VẤN ĐỀ
1
1
I. Lý do chọn sáng kiến
1
2
1.Cơ sở lí luận
1
3
2.Cơ sở thực tiễn
1
4
II. Mục đích nghiên cứu
1
5
III. Đối tượng phạm vi nghiên cứu
2
6
IV. Kế hoạch nghiên cứu
2
7
V. Thời gian và phạm vi áp dụng
2
PHẦN II: NỘI DUNG
2
8
1.Cơ sở lí luận
3
9
II. Thực trạng vấn đề
3
10
1.Đặc điểm tình hình địa phương, nhà trường, nhiệm vụ được giao
3
11
2. Thực trạng vấn đề
4
12
III. Các giải pháp thực hiện
5
13
1.Một số dạng toán điển hình về phân số
5
14
2.Hệ thống kiến thức cơ bản và mở rộng kiến thức cho học sinh khi giải các dạng toán về phân số
6
15
IV. Kết quả đạt được
22
PHẦN III: KẾT LUẬN
22
TÀI LIỆU THAM KHẢO
25
File đính kèm:
- sang kien toan sô.doc