Bài toán đa thức

Dạng. Xc định tham số m để đa thức P(x) + m chia hết cho

 nhị thức ax + b

Khi chia đa thức P(x) + m cho nhị thức ax + b ta luơn được

P(x)=Q(x)(ax+b) + m + r. Muốn P(x) chia hết cho x – a thì m + r = 0 hay m = -r = - P(). Như vậy bi tốn trở về dạng tốn 2.1.

Ví dụ: Xc định tham số

1.1. (Sở GD H Nội, 1996, Sở GD Thanh Hĩa, 2000). Tìm a để chia hết cho x+6.

 

doc7 trang | Chia sẻ: baoan21 | Lượt xem: 2561 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Bài toán đa thức, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
65582 Dạng . Tìm dư trong phép chia đa thức P(x) cho nhị thức ax + b Khi chia đa thức P(x) cho nhị thức ax + b ta luôn được P(x)=Q(x)(ax+b) + r, trong đó r là một số (không chứa biến x). Thế ta được P() = r. Như vậy để tìm số dư khi chia P(x) cho nhị thức ax+b ta chỉ cần đi tính r = P(), lúc này dạng toán 2.2 trở thành dạng toán 2.1. Ví dụ: Tìm số dư trong phép chia:P= Số dư r = 1,62414 - 1,6249 - 1,6245 + 1,6244 + 1,6242 + 1,624 – 723 Qui trình ấn máy (fx-500MS và fx-570 MS) Ấn các phím: Kết quả: r = 85,92136979 Bài tập Bài 1: (Sở GD Đồng Nai, 1998) Tìm số dư trong phép chia Bài 2: (Sở GD Cần Thơ, 2003) Cho . Tìm phần dư r1, r2 khi chia P(x) cho x – 2 và x-3. Tìm BCNN(r1,r2)? Dạng. Xác định tham số m để đa thức P(x) + m chia hết cho nhị thức ax + b Khi chia đa thức P(x) + m cho nhị thức ax + b ta luôn được P(x)=Q(x)(ax+b) + m + r. Muốn P(x) chia hết cho x – a thì m + r = 0 hay m = -r = - P(). Như vậy bài toán trở về dạng toán 2.1. Ví dụ: Xác định tham số 1.1. (Sở GD Hà Nội, 1996, Sở GD Thanh Hóa, 2000). Tìm a để chia hết cho x+6. - Giải - Số dư Qui trình ấn máy (fx-500MS và fx-570 MS) Ấn các phím: 6 47213 Kết quả: a = -222 1.2. (Sở GD Khánh Hòa, 2001) Cho P(x) = 3x3 + 17x – 625. Tính a để P(x) + a2 chia hết cho x + 3? -- Giải – Số dư a2 = - => a = Qui trình ấn máy (fx-500MS và fx-570 MS) Kết quả: a = 27,51363298 Chú ý: Để ý ta thấy rằng P(x) = 3x3 + 17x – 625 = (3x2 – 9x + 44)(x+3) – 757. Vậy để P(x) chia hết cho (x + 3) thì a2 = 757 => a = 27,51363298 và a = - 27,51363298 Dạng. Tìm đa thức thương khi chia đa thức cho đơn thức Ví dụ: Tìm thương và số dư trong phép chia x7 – 2x5 – 3x4 + x – 1 cho x – 5. -- Giải -- Ta có: c = - 5; a0 = 1; a1 = 0; a2 = -2; a3 = -3; a4 = a5 = 0; a6 = 1; a7 = -1; b0 = a0 = 1. Qui trình ấn máy (fx-500MS và fx-570 MS) Vậy x7 – 2x5 – 3x4 + x – 1 = (x + 5)(x6 – 5x5 + 23x4 – 118x3 + 590x2 – 2590x + 14751) – 73756 Bài 1: Cho đa thức P(x) = 6x3 – 7x2 – 16x + m. a. Tìm m để P(x) chia hết cho 2x + 3. b. Với m vừa tìm được ở câu a hãy tìm số dư r khi cia P(x) cho 3x-2 và phân tích P(x) ra tích các thừa số bậc nhất. c. Tìm m và n để Q(x) = 2x3 – 5x2 – 13x + n và P(x) cùng chia hết cho x-2. d. Với n vừa tìm được phân tích Q(x) ra tích các thừa số bậc nhất. Bài 2: a. Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f. Biết P(1) = 1; P(2) = 4; P(3) = 9; P(4) = 16; P(5) = 15. Tính P(6), P(7), P(8), P(9). a. Cho P(x) = x4 + mx3 + nx2 + px + q. Biết Q(1) = 5; Q(2) = 7; Q(3) = 9; Q(4) = 11. Tính Q(10), Q(11), Q(12), Q(13). Bài 3:Cho P(x) = x4 + 5x3 – 4x2 + 3x + m và Q(x) = x4 + 4x3 – 3x2 + 2x + n. a. Tìm giá trị của m, n để các đa thức P(x) và Q(x) chia hết cho x – 2. b. Với giá trị m, n vừa tìm được chứng tỏ rằng đa thức R(x) = P(x) – Q(x) chỉ có một nghiệm duy nhất. Bài 4: a. Cho P(x) = x5 + 2x4 – 3x3 + 4x2 – 5x + m. 1. Tìm số dư trong phép chia P(x) cho x – 2,5 khi m = 2003 2. Tìm giá trị m để P(x) chia hết cho x – 2,5 3. P(x) có nghiệm x = 2. Tìm m? b. Cho P(x) = x5 + ax4 +bx3 + cx2 + dx + e. Biết P(1) = 3, P(2) = 9, P(3) = 19, P(4) = 33, P(5) = 51. Tính P(6), P(7), P(8), P(9), P(10), P(11). Bài 5: Cho f(x)= x3 + ax2 + bx + c. Biết . Tính giá trị đúng và gần đúng của ? Bài 6:Cho đa thức P(x) = x10 + x8 – 7,589x4 + 3,58x3 + 65x + m. a. Tìm điều kiện m để P(x) có nghiệm là 0,3648 b. Với m vừa tìm được, tìm số dư khi chia P(x) cho nhị thức (x -23,55) c. Với m vừa tìm được hãy điền vào bảng sau (làm tròn đến chữ số hàng đơn vị). x -2,53 4,72149 P(x) Bài 7: 1.Tính với x= -7,1254 2.Cho x=2,1835 và y= -7,0216. Tính 3.Tìm số dư r của phép chia : 4.Cho . Tìm m để P(x) chia hết cho đa thức x+2 Bài 8: a. Tìm m để P(x) chia hết cho (x -13) biết P(x) = 4x5 + 12x4 + 3x3 + 2x2 – 5x – m + 7 b. Cho P(x) = ax5 + bx4 + cx3 + dx2 + ex + f biết P(1) = P(-1) = 11; P(2) = P(-2) = 47; P(3) = 107. Tính P(12)? Bài 9: (Sở GD Phú Thọ, 2004) Cho P(x) là đa thức với hệ số nguyên có giá trị P(21) = 17; P(37) = 33. Biết P(N) = N + 51. Tính N? Bài 10: (Thi khu vực 2004) Cho đa thức P(x) = x3 + bx2 + cx + d. Biết P(1) = -15; P(2) = -15; P(3) = -9. Tính: a. Các hệ số b, c, d của đa thức P(x). b. Tìm số dư r1 khi chia P(x) cho x – 4. c. Tìm số dư r2 khi chia P(x) cho 2x +3. Bài 11: (Sở GD Hải Phòng, 2004) Cho đa thức P(x) = x3 + ax2 + bx + c. Biết P(1) = -25; P(2) = -21; P(3) = -41. Tính: a. Các hệ số a, b, c của đa thức P(x). b. Tìm số dư r1 khi chia P(x) cho x + 4. c. Tìm số dư r2 khi chia P(x) cho 5x +7. d. Tìm số dư r3 khi chia P(x) cho (x+4)(5x +7). Bài 12: a. Cho đa thức P(x) = x4+ax3 + bx2 + cx + d. Biết P(1) = 0; P(2) = 4; P(3) = 18; P(4) = 48. Tính P(2002)? b. Khi chia đa thức 2x4 + 8x3 – 7x2 + 8x – 12 cho đa thức x – 2 ta được thương là đa thức Q(x) có bậc 3. Hãy tìm hệ số của x2 trong Q(x)? Bài 13: Tìm số dư trong các phép chia sau: x3 – 9x2 – 35x + 7 cho x – 12. x3 – 3,256 x + 7,321 cho x – 1,1617. Tính a để x4 + 7x3 + 2x2 + 13x + a chia hết cho x + 6 Cho P(x) = 3x3 + 17x – 625 + Tính P(2) + Tính a để P(x) + a2 chia hết cho x + 3 Bài 14 : Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f . Biết P(1) = 1 , P(2) = 4 , P(3) = 9 , P(4) = 16 , P(5) = 15 . Tính P(6) , P(7) , P(8) , P(9) Giải: Ta cĩ P(1) = 1 = 12; P(2) = 4 = 22 ; P(3) = 9 = 32 ; P(4) = 16 = 42 ; P(5) = 25 = 52 Xét đa thức Q(x) = P(x) – x2. Dễ thấy Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0. Suy ra 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x). Vì hệ số của x5 bằng 1 nên Q(x) cĩ dạng: Q(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5). Vậy ta cĩ Q(6) = (6 – 1)(6 – 2)(6 – 3)(6 – 4)(6 – 5) = P(6) - 62 Hay P(6) = 5! + 62 = 156. Q(7) = (7 – 1)(7 – 2)(7 – 3)(7 – 4)(7 – 5) = P(7) – 72 Hay P(7) = 6! + 72 = 769 Bài 15: Cho Q(x) = x4 + mx3 + nx2 + px + q . Biết Q(1) = 5 , Q(2) = 7 , Q(3) = 9 , Q(4) = 11 . Tính các giá trị của Q(10) , Q(11) , Q(12) , Q(13) Hướng dẫn Q(1) = 5 = 2.1 + 3; Q(2) = 7 = 2.2 + 3; Q(3) = 9 = 2.3 + 3 ; Q(4) = 11 = 2.4 + 3 Xét đa thức Q1(x) = Q(x) – (2x + 3) Bài 16 : Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + e . Biết P(1) = 3 , P(2) = 9 , P(3) = 19 , P(4) = 33 , P(5) = 51 . Tính P(6) , P(7) , P(8) , P(9) , P(10) , P(11) . Bài 17: Cho P(x) = x4 + ax3 + bx2 + cx + d. Cĩ P(1) = 0,5 ; P(2) = 2 ; P(3) = 4,5 ; P(4) = 8. Tính P(2002), P(2003) Bài 18: Cho P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 5; P(2) = 14; P(3) = 29; P(4) = 50. Hãy tính P(5) , P(6) , P(7) , P(8) Bài 19: Cho P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 0; P(2) = 4 ; P(3) = 18 ; P(4) = 48. Tính P(2007) Bài 20 : Cho P(x) = x5 + 2x4 – 3x3 + 4x2 – 5x + m . Tìm số dư trong phép chia P(x) cho x – 2,5 khi m = 2003 . Tìm giá trị của m để P(x) chia hết cho x – 2,5 P(x) cĩ nghiệm x = 2 . Tìm m . Bài 21: Cho P(x) = . Tìm biểu thức thương Q(x) khi chia P(x) cho x – 5. Tìm số dư của phép chia P(x) cho x – 5 chính xác đến 3 chữ số thập phân. Bài 22: Tìm số dư trong phép chia đa thức x5 – 7,834x3 + 7,581x2 – 4,568x + 3,194 cho x – 2,652. Tìm hệ số của x2 trong đ thức thương của phép chia trên. Bài 23: Khi chia đa thức 2x4 + 8x3 – 7x2 + 8x – 12 cho x – 2 ta được thương là đa thức Q(x) cĩ bậc là 3. Hãy tìm hệ số của x2 trong Q(x) Bài 24: Cho đa thức P(x) = 6x3 – 7x2 – 16x + m . Tìm m để P(x) chia hết cho 2x + 3 Với m tìm được ở câu a ) , hãy tìm số dư r khi chia P(x) cho 3x – 2 và phân tích P(x) thành tích của các thừa số bậc nhất Tìm m và n để Q(x) = 2x3 – 5x2 – 13x + n và P(x) cùng chia hết cho x – 2 . Với n tìm được ở trên , hãy phân tích Q(x) ra tích của các thừa số bậc nhất. Bài 25: Cho P(x) = x4 + 5x3 – 4x2 + 3x + m và Q(x) = x4 + 4x3 - 3x2 + 2x + n . Tìm các giá trị của m và n để P(x) và Q(x) cùng chia hết cho x – 2 . Với giá trị của m và n tìm được , chứng tỏ rằng R(x) = P(x) – Q(x) chỉ cĩ một nghiệm duy nhất Bài 26 : Cho f(x) = x3 + ax2 + bx + c . Biết : f = ; f = ; f = . Tính giá trị đúng và gần đúng của f . Bài 27: Xác định các hệ số a, b, c của đa thức: P(x) = ax3 + bx2 + cx – 2007 để sao cho P(x) chia cho (x – 13) cĩ số dư là 1, chia cho (x – 3) cĩ số dư là là 2, và chia cho (x – 14) cĩ số dư là 3 (Kết quả lấy với hai chữ số ở hàng thập phân) Bài 28: Xác định các hệ số a, b, c, d và tính giá trị của đa thức Q(x) = x5 + ax4 + bx3 + cx2 + dx – 2007 tại các giá trị của x = 1,15; 1,25; 1,35; 1,45 Bài 29: Hai đường thẳng y = x + (1) và y = x + (2) cắt nhau tại điểm A. Một đường thẳng đi qua điểm H ( 5; 0) theo thứ tự tại B và C. Tìm tọa độ các điểm A ; B ; C ( viết dưới dạng phân số ) Tính diện tích tam giác ABC (viết dưới dạng phan số) theo đoạn thẳng đơn vị mổi trên trục tọa độ là 1 cm. Tính số đo mổi gĩc của tam giác ABC đơn vị độ ( chính xác đến phút ). x= x = x = y = y = y = S = Gĩc A Gĩc B Gĩc C Bài 30 : Đa thức P( x) = x + ax + bx + cx + dx +e cĩ giá trị lần lượt là 11; 14 ; 19 ; 26 ; 35 khi x , theo thứ tự , nhận các giá tri tương ứng là 1 ; 2 ; 3; 4 ; 5 . a) Hãy tính giá trị của đa thức P(x) khi x lần lượt nhận các giá trị 11 ; 12 ; 13 ; 14 ; 15 ; 16. b) Tìm số dư r của phép chia P(x) cho 10x – 3. P(11) = P(12) = P(13)= P(14)= P(15)= P(16)= r = Bài 31; Cho đa thức P(x) = 6x - 7x -16x + m a ) Với điều kiện nào của m thì đa thức P(x) = 6x -7x2 -16x +m chia hết cho 2x +3 ? m = b) Với m tìm được ở câu a) , hãy tìm số dư r khi chia đa thức P(x)= 6x3 -7x2 -16x +m cho 3x -2. r = c)Với m tìm được ở câu a) , hãy phân tích đa thức P(x)= 6x3 – 7x2 -16x +m ra tích các thừa số bậc nhất. Tìm m và n để hai đa thức P(x) = 6x -7x2 -16x +m và Q(x)= 2x3 – 5x2 -13x +n cùng chia hết cho x-2. m = n = Với n vưa tìm được ở câu trên , hãy phân tích Q(x) ra tích các thừa số bậc nhất ? Bài 32: Tìm số dư trong phép chia Bài 33: Cho . Tìm phần dư r1, r2 khi chia P(x) cho x – 2 và x-3. Tìm BCNN(r1,r2)?

File đính kèm:

  • docDA THUC CASIO.doc
Giáo án liên quan